Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Модели ценности информации




Тема лекции: Ценность информации

 

Лекция № 2

 

 

ТАМБОВ

Цель лекции: Сформулировать понятие ценности информации, решетки ценности. Рассмотреть основные модели ценности информации и примеры их использования для обработки информации.

Воспитательные цели:

Воспитание чувства ответственности за порученное дело, высокой личной дисциплинированности и исполнительности, добросовестного отношения к учебе, стремления в совершенстве овладеть избранной специальностью, развитие у обучаемых системного и логического мышления, осознания важности и необходимости средств защиты информации в АС.

 

Содержание

(Программные вопросы лекции)

 

Модели ценности информации.

Основные составляющие информационной безопасности.

Важность и сложность проблемы информационной безопасности.

 

Учебно-материальное обеспечение

 

Литература для самостоятельной работы:

1. Галатенко В.А. Основы информационной безопасности. М.:ИНТУИТ.РУ. – 2003. с.15-26.

2. Завгородний В.И. Комплексная защита информации в компьютерных системах. М.: «Логос» – 2001. с. 8-16

3. Малюк А.А., Пазизин С.В., Погожин Н.С. Введение в защиту информации в автоматизированных системах. М.: «Горячая Линия – Телеком» – 2001. с. 5-14.

4. Девянин П.Н., Михальский О.О., Правиков Д.И., Щербаков А.Ю. Теоретические основы компьютерной безопасности – М.: Радио и связь -2000.- c. 22-24.

 

Наглядные пособия: слайды по теме занятия (см. прил 1).

 

Материальное обеспечение: LCD-проектор или Лектор 2000.


Организационно-методические указания по проведению занятия

 

На данную лекцию выносится основной теоретический материал по безопасности информационных систем, основных понятиях и определениях. Лекция проводится в стандартной наглядно-объяснительной форме.

В вводной части необходимо:

- принять доклад дежурного готовности к занятию;

- довести тему занятия и записать ее на доске;

- четко довести цели и программные вопросы лекции, а также используемую литературу.

В лекции № 2 рассматриваются два вопроса.

Модели ценности информации.

2. Решетка ценности информации в РБД

При рассмотрении первого вопроса необходимо акцентировать внимание студентов на понятии ценность информации и основных моделей ее определения.

При изложении материалов второго вопроса основное внимание уделить примерам использования моделей ценности информации при обработке данных

В ходе лекции необходимо задавать студентам вопросы для контроля качества усвоения материала.

После каждого вопроса и в конце лекции необходимо сделать выводы.

В основной части занятия необходимо обосновать актуальность и практическую значимость данной лекции.

В заключительной части необходимо:

- ответить на вопросы студентов;

- задать вопросы для контроля степени усвоения материала лекции;

- сделать выводы по занятию;

- довести (скорректировать при необходимости) задание на самостоятельную подготовку;

- объявить тему и вид следующего занятия;

- закончить занятие.

Тема лекции: «Ценность информации»

Введение

Чтобы защитить информацию, надо затратить силы и средства, а для этого надо знать какие потери мы могли бы понести. Ясно, что в денежном выражении затраты на защиту не должны превышать возможные потери.

 

Модели ценности информации

 

Для решения этих задач в информацию вводятся вспомогательные структуры - ценность информации. Рассмотрим примеры.

1. Аддитивная модель. Пусть информация представлена в виде конечного множества элементов и необходимо оценить суммарную стоимость в денежных единицах из оценок компонент. Оценка строится на основе экспертных оценок компонент, и, если денежные оценки объективны, то сумма дает искомую величину. Однако, количественная оценка компонент невсегда объективна даже при квалифицированной экспертизе. Это связано с неоднородностью компонентв целом. Поэтому делают единую иерархическую относительную шкалу (линейный порядок, который позволяет сравнивать отдельные компоненты по ценности относительно друг друга). Единая шкала означает равенство цены всех компонент, имеющих одну и туже порядковую оценку.

Пример 1 01,...,0n - объекты, шкала 1<...<5. Эксперты оценили (2, 1, 3,...., 4) - вектор относительных

ценностей объектов. Если есть цена хотя бы одного объекта, например, C1=100 руб., то вычисляется оценка одного балла С1/l. = 50 руб.,

где l - число баллов оценки первого объекта, и вычисляется цена каждого следующего объекта: C2=50руб., C3=150 руб. и т.д. Сумма дает стоимость всей информации. Если априорно известна цена информации, то относительные оценки в порядковой шкале позволяют вычислить цены компонент.

2. Анализ риска. Пусть в рамках аддитивной модели проведен учет стоимости информации в системе. Оценка возможных потерь строится на основе полученных стоимостей компонент, исходя из прогноза возможных угроз этим компонентам. Возможности угроз оцениваются вероятностями соответствующих событий, а потери подсчитываются как сумма математических ожиданий потерь для компонент по распределению возможных угроз.

Пример 2. Пусть О1,...,Оn - объекты, ценности которых С1,...,Сn. Предположим, что ущерб одному объекту не снижает цены других, и пусть вероятность нанесения ущерба объекту Оi равна рi, функция потерь ущерба для объекта Оi равна

{ Ci, если объету i нанесен ущерб,

Wi= {

{ 0, в противном случае.

Оценка потерь от реализации угроз объекту i равна EWi = piСi.

Исходя из сделанных предположений, потери в системе равны W=W1+...+Wn. Тогда ожидаемые потери(средний риск) равны:

n

EW=åpiCi

i=1

Существуют ППП, позволяющие автоматизировать оценку риска, например, RASYS.

3. Порядковая шкала ценностей. Далеко не всегда возможно и нужно давать денежную оценку информации. Например, оценка личной информации, политической информации или военной информации не всегда разумна в денежном исчислении. Однако подход, связанный со сравнением ценности отдельных информационных элементов между собой, по-прежнему имеет смысл.

Пример 3. При оценке информации в государственных структурах используется порядковая шкала ценностей. Все объекты (документы) государственного учреждения разбиваются по грифам секретности. Сами грифы секретности образуют порядковую шкалу: несекретно < для служебного пользования <секретно < совершенно секретно (НС<ДСП<С<СС) или у американцев: unclassified<confidential<secret<top secret (U<Conf<S<TS). Более высокий класс имеет более высокую ценность и поэтому требования по его защите от несанкционированного доступа более высокие.

4. Модель решетки ценностей. Обобщением порядковой шкалы является модель решетки. Пусть дано SC - конечное частично упорядоченное множество относительно бинарного отношения <, т.е. для каждых А, В, С выполняется

1) рефлексивность: А<А,

2) транзитивность: А<В, В<С==>А<С,

3) антисимметричность: А<В, В<А => А=В.

Определение. Для А, BÎSC элемент C=AÅBÎSCназывается наименьшей верхней границей (верхней гранью), если

1) А<С, В<С;

2) A<D, B<DÞC<D для всех DÎSC.

Элемент AÅB, вообще говоря, может не существовать. Если наименьшая верхняя граница существует, то из антисимметричности следует единственность.

Упражнение. Доказать это.

Определение. Для А, BÎC элемент E=AÄBÎSCназывается наибольшей нижней границей (нижней гранью), если

1) Е<А, Е<В;

2) D<A, D<BÞD<E.

Эта граница также может не существовать. Если она существует, то из антисимметричности следует единственность.

Упражнение. Доказать этот факт.

Определение. (SC, <) называется решеткой, если для любых А, BÎSC существует AÅBÎSC и AÄBÎSC.

Лемма. Для любого набора S={А1,...,Аn } элементов из решетки SC существуют единственные элементы,:

ÅS=A1Å...ÅAn - наименьшая верхняя граница S;

ÄS=A1Ä...ÄAn - наибольшая нижняя граница S.

Доказательство. Докажем ассоциативность операции Å.

C1=(A1ÅA2) ÅA3=A1Å(A2ÅA3)=C2.

По определению C1>A3, C1>A1ÅA2. Отсюда следует С1>Аз, С1>A2, С11. Тогда C1>A2ÅA3, С11, cледовательно, С12. Аналогично С21. Из антисимметричности С12.

Отсюда следует существование и единственность ÅS. Такими же рассуждениями доказываем, что существует ÄS и она единственна. Лемма доказана.

Для всех элементов SC в конечных решетках существует верхний элемент High = ÅSC, аналогично существует нижний элемент Low = ÄSC.

Определение. Конечная линейная решетка - это линейно упорядоченное множество, можно всегда считать {0, 1,..., n}=SC.

Для большинства встречающихся в теории защиты информации решеток существует представление решетки в виде графа. Рассмотрим корневое дерево на вершинах из конечного множества Х={Х1, Х2...Хn }с корнем в Xi. Пусть на единственном пути, соединяющем вершину X1 с корнем, есть вершина Xj. Положим по определению, что Хij. Очевидно, что таким образом на дереве определен частичный порядок. Кроме того, для любой пары вершин Xi и Xj существует элемент ХiÅХj, который определяется точкой слияния путей из Xi и Xj в корень. Однако такая структура не является решеткой, т.к. здесь нет нижней грани. Оказывается, что от условия единственности пути в корень можно отказаться, сохраняя при этом свойства частичного порядка и существование верхней грани. Например, добавим к построенному дереву вершину L, соединив с ней все концевые вершины. Положим i=l,...,n, L<Xj. Для остальных вершин порядок определяется как раньше. Построенная структура является решеткой.

Упражнение Доказать этот факт.

Приведенный пример не исчерпывает множество решеток, представимых в виде графов, однако поясняет как связаны графы и решетки.

Упражнение. Покажите, что следующие графы определяют решетки.

 

Не всякий граф определяет решетку. Например,

Упражнение. Доказать, что это так.

Для "A, ВÎХ. Определим А<ВÞАÍВ. Все условия частичного порядка 1), 2), 3) выполняются. Кроме того, AÅB - это АÈВ, АÄВ=АÇВ. Следовательно, это решетка.

Пример 4. Х={1, 2, 3}.

(1 2 3)

1 2 2 3 1 3

1 2 3

Æ

 

Пусть программа имеет Х={Х1,...,Хm} - входные,Y1...Yn - выходные элементы. Каждый выходной элемент зависит от некоторых входных элементов. Отношение вход-выход описывается решеткой рассматриваемого типа. Решетка подмножеств строится по подмножествам X следующим образом. Для каждой Хi X i={Хi}. Для каждой Yj Y j={Xi|XjàYj}.

Пример 5. X1, Х2, X3, Y1, Y2. Y1 зависит только от X12; Y2 зависит от X1 и Х3.

Y1={X1,X2} Y 2={X1,X3}

H

Y 1 Y 2

X 1

X2 X3

L

MLS решетка.

Название происходит от аббревиатуры Multilevel Security и лежит в основе государственных стандартов оценки информации. Решетка строится какпрямое произведение линейной решетки L и решетки SC подмножеств множества X, т.е. (a,b), (a’,b’) -элементы произведения, b,b’ÎL - линейная решетка, a,a’ÎSC - решетка подмножеств некоторого множества X. Тогда

(a,b)<(a’,b’)ÛaÍa’,b<b’

Верхняя и нижняя границы определяются следующим образом:

(a,b)Å(a¢,b¢)Û(aÈa¢,max{b,b’}),

(a,b)Ä(a¢,b¢)Û(aÇa¢,min{b,b’}).

Вся информация {объекты системы} отображается в точки решетки {(а,b)}. Линейный порядок, как правило, указывает гриф секретности. Точки множества X обычно называются категориями.

Свойства решетки в оценке информации существенно используются при классификации новых объектов, полученных в результате вычислений. Пусть дана решетка ценностей SC, множество текущих объектов О, отображение С: 0àS, программа использует информацию объектов 01,..,0n, которые классифицированы точками решетки С(01),...,С(0n). В результате работы программы появился объект О, который необходимо классифицировать. Это можно сделать, положив С(0)= C(01)Å...ÅC(0n). Такой подход к классификации наиболее распространен в государственных структурах. Например, если в сборник включаются две статьи с грифом секретно и совершенно секретно соответственно, и по тематикам: первая - кадры, вторая - криптография, то сборник приобретает гриф совершенно секретно, а его тематика определяется совокупностью тематик статей (кадры,криптография).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...