Классификация по виду выходных величин
Стр 1 из 3Следующая ⇒ Понятие о сигнале, классификация сигналов. Сигнал (в теории информации и связи) — материальный носитель информации, используемый для передачи сообщений в системе связи. Сигнал, детерминированный или случайный, описывают математической моделью, функцией, характеризующей изменение параметров сигнала. В радиотехнике альтернативой сигналу, который несёт полезную информацию, является шум — обычно случайная функция времени, взаимодействующая (например, путём сложения) с сигналом и искажающая его. Понятие сигнал позволяет абстрагироваться от конкретной физической величины, например тока, напряжения, акустической волны.
Классификация сигналов По физической природе носителя информации: ▪ электрические; ▪ электромагнитные; ▪ оптические; ▪ акустические и др.;
По способу задания сигнала: ▪ регулярные (детерминированные), заданные аналитической функцией; ▪ нерегулярные (случайные), принимающие произвольные значения в любой момент времени. Для описания таких сигналов используется аппарат теории вероятностей. В зависимости от функции, описывающей параметры сигнала, выделяют аналоговые, дискретные, квантованные и цифровые сигналы: ▪ непрерывные (аналоговые), описываемые непрерывной функцией; ▪ дискретные, описываемые функцией отсчётов, взятых в определённые моменты времени; ▪ квантованные по уровню; ▪ дискретные сигналы, квантованные по уровню (цифровые).
Аналоговый сигнал (АС) Большинство сигналов имеют аналоговую природу, то есть изменяются непрерывно во времени и могут принимать любые значения на некотором интервале. Аналоговые сигналы описываются некоторой математической функцией времени.
Пример АС — гармонический сигнал — s(t) = A·cos(ω·t + φ). Аналоговые сигналы используются в измерительной технике, телефонии, радиовещании, телевидении. Ввести такой сигнал непосредственно в компьютер и обработать его невозможно, так как на любом интервале времени он имеет бесконечное множество значений, а для точного (без погрешности) представления его значения требуются числа бесконечной разрядности. Поэтому необходимо преобразовать аналоговый сигнал так, чтобы можно было представить его последовательностью чисел заданной разрядности.
Дискретный сигнал Дискретизация аналогового сигнала состоит в том, что сигнал представляется в виде последовательности значений, взятых в дискретные моменты времени. Эти значения называются отсчётами. Δt называется интервалом дискретизации. Квантованный сигнал При квантовании вся область значений сигнала разбивается на уровни, количество которых должно быть представлено в числах заданной разрядности. Расстояния между этими уровнями называется шагом квантования Δ. Число этих уровней равно N (от 0 до N-1). Каждому уровню присваивается некоторое число. Отсчёты сигнала сравниваются с уровнями квантования и в качестве сигнала выбирается число, соответствующее некоторому уровню квантования. Каждый уровень квантования кодируется двоичным числом с n разрядами. Число уровней квантования N и число разрядов n двоичных чисел, кодирующих эти уровни, связаны соотношением n ≥ log2(N).
Цифровой сигнал Для того, чтобы представить аналоговый сигнал последовательностью чисел конечной разрядности, его следует сначала превратить в дискретный сигнал, а затем подвергнуть квантованию. Квантование является частным случаем дискретизации, когда дискретизация происходит по одинаковой величине называемой квантом. В результате сигнал будет представлен таким образом, что на каждом заданном промежутке времени известно приближённое (квантованное) значение сигнала, которое можно записать целым числом. Если записать эти целые числа в двоичной системе, получится последовательность нулей и единиц, которая и будет являться цифровым сигналом.
Представление сигнала и спектр Есть два способа представления сигнала в зависимости от области определения: временной и частотный. В первом случае сигнал представляется функцией времени характеризующей изменение его параметра. Кроме привычного временного представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты. Действительно, любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Для перехода к частотному способу представления используется преобразование Фурье Размерность спектральной функции есть размерность сигнала, умноженная на время.
Сигналы также подразделяются на периодические, апериодические и импульсные.
Характеристиками периодических сигналов являются период (частота), амплитуда, размах, среднее значение.
Апериодические сигналы не имеют периода повторения.
Импульсные сигналы – единичные дискретные сигналы, не имеющие стабильного периода повторения.
Для определения параметров сигналов производят действия, называемые измерение.
Измерительный преобразователь — техническое средство с нормируемыми метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.) или применяется вместе с каким-либо средством измерений.
Классификация ▪ По характеру преобразования: Аналоговый измерительный преобразователь — измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);
Аналого-цифровой измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код; Цифро-аналоговый измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину. ▪ По месту в измерительной цепи: Первичный измерительный преобразователь — измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым преобразователем в измерительной цепи измерительного прибора; Датчик — конструктивно обособленный первичный измерительный преобразователь; Детектор — датчик в области измерений ионизирующих излучений; Промежуточный измерительный преобразователь — измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя. ▪ По другим признакам: Передающий измерительный преобразователь — измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации; Масштабный измерительный преобразователь — измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз. ▪ По принципу действия ИП делятся на генераторные и параметрические.
Некоторые примеры ▪ Термопара в термоэлектрическом термометре ▪ Измерительный трансформатор ▪ Электропневматический преобразователь ▪ Преобразователь угол-код
Датчики. Общие сведения Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.
Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. В качестве отдельной категории использования датчиков в автоматических системах регистрации параметров можно выделить их применение в системах научных исследований и экспериментов.
Определения понятия датчик Широко встречаются следующие определения: ▪ чувствительный элемент, преобразующий параметры среды в пригодный для технического использования сигнал, обычно электрический, хотя возможно и иной по природе, например — пневматический сигнал; ▪ законченное изделие на основе указанного выше элемента, включающее, в зависимости от потребности, устройства усиления сигнала, линеаризации, калибровки, аналого-цифрового преобразования и интерфейса для интеграции в системы управления. В этом случае чувствительный элемент датчика сам по себе может называться сенсором. ▪ датчиком называется часть измерительной или управляющей системы, представляющая собой конструктивную совокупность измерительных преобразователей, включающую преобразователь вида энергии сигнала, размещенную в зоне действия влияющих факторов объекта и воспринимающий естественно закодированную информацию от этого объекта. ▪ датчик – конструктивно обособленная часть измерительной системы, содержащая один или несколько первичных преобразователей, а также один или несколько промежуточных преобразователей. Эти определения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др. В третьем и четвертом определении акцент делается на том, что датчик является конструктивно обособленной частью измерительной системы, воспринимающей информацию, а следовательно обладающий самодостаточностью для выполнения этой задачи и определенными метрологическими характеристиками.
Применение датчиков В последнее время в связи с удешевлением электронных систем всё чаще применяются датчики со сложной обработкой сигналов, возможностями настройки и регулирования параметров и стандартным интерфейсом системы управления. Имеется определённая тенденция расширительной трактовки и перенесения этого термина на измерительные приборы, появившиеся значительно ранее массированного использования датчиков, а также по аналогии — на объекты иной природы, например, биологические. Понятие датчика по практической направленности и деталям технической реализации близко к понятиям измерительный инструмент и измерительный прибор, но показания этих приборов в основном читаются человеком, а датчики, как правило, используются в автоматическом режиме.
Классификация датчиков
Классификация по виду выходных величин ▪ Активные (генераторные) ▪ Пассивные (параметрические)
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|