Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Лекция №2 Тема: «Биохимические основы наследственности человека»

 

Несмотря на то, что ДНК (дезоксирибонуклеиновая к-та) была известна с 1869г. (Открыл Иоганн Фридрих Мишер) и наличие её в хромосомах было хорошо доказано, эту молекулу считали слишком простой для передачи наследственной информации. Лишь после открытия в 1953 г. физико-химической структуры ДНК Дж. Уотсоном и Ф. Криком стало окончательно ясно, что передача наследственной информации осуществляется с помощью ДНК. Нуклеиновая кислота представляет собой гигантскую молекулу, длинную, закрученную в двойную спираль молекулу, построенную из многих повторяющихся единиц, называемых нуклеотидами.

Нуклеотид состоит из азотистого основания, сахара и остатка фосфорной кислоты. Азотистые основания представлены двумя пуриновыми производными – аденином (А) и гуанином (Г), и тремя пиримидиновыми – цитозином (Ц), тимином (Т) и урацилом (У).

В состав ДНК входят А, Т, Г, Ц,; в РНК – А, Г, Ц. А тимин здесь заменён на урацил. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают 2 типа нуклеиновых кислот – дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК). В нуклеотидах к молекуле дезоксирибозы (или рибозы) с одной стороны присоединено азотистое основание, а с другой – остаток фосфорной кислоты. Согласно предложенной Дж. Уотсоном и Ф. Криком модели, молекула ДНК представляет собой две параллельные полинуклеотидные цепи, закрученные в двойную спираль. Пространственная структура ДНК удерживается множеством водородных связей, которые возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Строение нуклеотидов таково, что они могут располагаться напротив друг друга только по строго определённому правилу: А напротив Т, Г напротив Ц- это принцип комплементарности оснований (составляют комплементарные пары: А=Т, Г=Ц). В отличие от ДНК молекулы РНК, ка правило, однонитевые. Построены они аналогично нитям ДНК, только в сахарно-фосфатный остов их молекул входит не дезоксирибоза, а рибоза, и вместо тимина (Т) у них имеется урацил (У).

В зависимости от функций, все РНК могут быть разделены на несколько классов:

информационная (и-РНК), или матричная (м-РНК) около 5%;

транспортная (т-РНК) около 15%;

рибосомальная (р-РНК) около 80%.

Каждая молекула РНК выполняет свою специфическую функцию:

м-РНК переносят информацию о структуре белка от ДНК к рибосомам, т.е. служат матрицей для синтеза белка;

т-РНК переносят аминокислоты в рибосомы;

р-РНК образуют в комплексе с белками рибосому, сложную органеллу, в которой происходит синтез белка.

Функции нуклеиновых кислот. Нуклеиновые кислоты выполняют важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

Элементарной единицей наследственности является ген.

Ген – это участок молекулы ДНК, характеризуемый специфической для него последовательностью нуклеотидов, и способный изменяться путём мутирования. Молекула ДНК может содержать множество генов. У человека имеется около 30-40 тыс. генов, каждый из которых выполняет специфическую функцию – кодирует определенный полипептид. Каждая исходная молекула ДНК даёт начало огромному числу новых молекул ДНК. Это происходит в процессе репликации, при которой информация, закодированная в родительской ДНК, передаётся с максимальной точностью дочерней ДНК. Репликация – единственно возможный способ увеличения числа молекул ДНК, с помощью фермента ДНК-полимеразы разрываются слабые водородные связи между двумя цепями ДНК, образуются одноцепочечные нити. Затем к каждой цепочке достраиваются по принципу комплементарности нуклеотиды (А-Т, Г-Ц), образуя две двухцепочечные молекулы ДНК. Процесс репликации нуклеиновых кислот целиком зависит от работы ряда ферментов: ДНК-полимеразы, РНК-полимеразы, эндонуклеазы и ДНК-лигазы. Кроме механизма, обеспечивающего сохранение генетической информации (репликация), и материальной единицы наследственности (ген), существует механизм реализации наследственной информации.

Генетическая информация реализуется через следующие этапы: Транскрипция («переписывание) – перенос генетической информации от ДНК в РНК.

Транскрипция заключается в том, что на одной из нитей ДНК происходит матричный синтез нити м-РНК. Этот синтез осуществляется особым ферментом – РНК-полимеразой, который прикрепляется к началу участка ДНК, расплетает двойную спираль ДНК и, перемещаясь вдоль одной из нитей, последовательно строит рядом с ней комплементарную ей нить РНК. Синтезированная нить РНК содержит информацию, точно переписанную с соответствующего участка ДНК. В ядре и при выходе из него происходит процессинг – дозревание РНК (вырезание неинформативных участков), в результате чего РНК укорачивается. Далее молекулы РНК выходят из ядра в цитоплазму и соединяются с рибосомами, где происходит процесс трансляции. Трансляция (перевод) – процесс перевода РНК-текста (декодирования, в результате которого информация с языка м-РНК переводится на язык аминокислот). Центральное место в трансляции принадлежит рибосомам. Рибосома образована двумя субъединицами – большой и малой, состоящими из р-РНК и белков. Аминокислоты, синтезированные клеткой, доставляются к месту сборки из них белка, т.е. рибосомы, посредством т-РНК. Каждой аминокислоте в м-РНК соответствует определенная тройка (триплет) нуклеотидов, называемая кодоном этой аминокислоты. В м-РНК существуют кодоны: инициирующие (АУГ), определяющие начало синтеза белка; терминирующие (стоп-кодон: УАГ, УАА, УГА), заканчивающие синтез белка. Сигналом к завершению трансляции служит один из трех стоп-кодонов. Генетическая информация, содержащаяся в ДНК и м-РНК, заключена в последовательности расположения нуклеотидов в молекулах. Перенос информации с языка нуклеотидов на язык аминокислот осуществляется с помощью генетического кода.

Генетический код – это система записи информации о последовательности расположения нуклеотидов в ДНК и и-РНК. Кодон – слово в ДНК-книге, т.е. генетический код является по своей природе триплетным.

Свойства генетического кода:

1. Код триплетен. Каждая аминокислота кодируется группой из трёх нуклеотидов (тирозин – УАУ)

2. Вырожденность (неоднозначность) генетического кода. Одна аминокислота может кодироваться не одним, а несколькими триплетами нуклеотидов (валин – ГУУ, ГУЦ, ГУА)

3. Однозначность генетического кода (специфичность). Каждому кодону соответствует только одна аминокислота, т.е. триплет шифрует только одну аминокислоту (триптофан – УГГ)

4. Неперекрываемость генетического кода. Каждый нуклеотид входит лишь в какой-либо один триплет и переписывание информации происходит строго потриплетно.

5. Универсальность генетического кода. Генетическая информация для всех организмов, обладающих разным уровнем организации (от ромашки до человека), кодируется одинаково.

6. Линейность генетического кода. Кодоны прочитываются линейно (последовательно) в направлении закодированной записи.

Ген – участок молекулы ДНК, кодирующий либо последовательность аминокислот в белке, либо разные виды молекул РНК, участвующих в синтезе белка.

Локус – это место расположения гена в хромосоме.

Геном – это полное количество ДНК у данного вида, содержащееся в гаплоидном наборе хромосом.

Хроматин – комплекс ДНК со специальными белками.

Митоз – основной способ деления соматических клеток.

Центромера – первичная перетяжка хромосомы (определяет форму хромосомы).

Кариотип – совокупность хромосом(у человека составляет 46 хромосом).

Гомолочичные – 22 пары одинаковые. (хромосомы 23-й пары бывают двух видов: Х и Y).

Половые хромосомы – определяют пол 23-я пара, Норма ХХ - женская,ХY-мужская.

Существуют определённые правила обозначения кариотипа. Сначала указывают общее число хромосом, затем какие половые хромосомы входят в хромосомный набор. Далее перечисляется, какие отклонения от нормы встречаются у данного индивидуума (Так кариотип нормальной женщины будет записан как 46,ХХ; а кариотип нормального мужчины – 46, ХY). Если в клетках мужчины присутствует лишняя хромосома, например, 21-я, как это происходит при самой распространённой форме болезни Дауна, кариотип будет записан следующим образом: 46,ХY, +21.

Для возникновения новой жизни необходимо слияние двух родительских клеток – яйцеклетки и сперматозоида, называемых гаметами. Каждая из них несёт по одной из 23 парных хромосом_ такой набор называется гаплоидным. После слияния образуется зигота, содержащая уже полный (диплоидный) набор из 46 хромосом.

В женской гамете всегда присутствует только Х-хромосома, необходимая ребёнку любого пола. А сперматозоиды могут нести любую из половых хромосом, как Х, так и Y. Значит пол ребёнка будет зависеть от того, какой сперматозоид будет участвовать в образовании зиготы. А значит папы определяют, кто у них родится- сын или дочь.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...