Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Способы задания закона распределения дискретной случайной величины




Локальная теорема Лапласа. Свойства функции Гаусса ср(х).

Теорема

Локальная теорема Муавра — Лапласа. Если в схеме Бернулли число n велико, а число p отлично от 0 и 1, тогда:

Функция φ(x) называется функцией Гаусса. Ее значения давно вычислены и занесены в таблицу, которой можно пользоваться даже на контрольных работах и экзаменах.

Функция Гаусса обладает двумя свойствами, которые следует учитывать при работе с таблицей значений:

  1. φ(−x) = φ(x) — функция Гаусса — четная;
  2. При больших значениях x имеем: φ(x) ≈ 0.

Локальная теорема Муавра — Лапласа дает отличное приближение формулы Бернулли, если число испытаний n достаточно велико. Разумеется, формулировка «число испытаний достаточно велико» весьма условна, и в разных источниках называются разные цифры. Например:

  1. Часто встречается требование: n · p · q > 10. Пожалуй, это минимальная граница;
  2. Другие предлагают работать по этой формуле только для n > 100 и n · p · q > 20.

На мой взгляд, достаточно просто взглянуть на условие задачи. Если видно, что стандартная теорема Бернулли не работает из-за большого объема вычислений (например, никто не будет считать число 58! или 45!), смело применяйте Локальную теорему Муавра — Лапласа.

К тому же, чем ближе значения вероятностей q и p к 0,5, тем точнее формула. И, наоборот, при пограничных значениях (когда p близко к 0 или 1) Локальная теорема Муавра — Лапласа дает большую погрешность, значительно отличаясь от настоящей теоремы Бернулли.

Обратите внимание: в функцию Гаусса подставляется довольно сложное число, содержащее арифметический квадратный корень и дробь. Это число обязательно надо найти еще до подстановки в функцию. Рассмотрим все на конкретных задачах:

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Нормальный закон распределения также называется законом Гаусса.

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры и, входящие в плотность распределения являются соответственно математическим ожиданием и средним квадратическим отклонением случайной величины Х.

Интегральная теорема Лапласа. Свойство функции Лапласа Ф(х).

Функция Лапласа

Найдем вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Обозначим

Тогда

Т.к. интеграл не выражается через элементарные функции, то вводится в рассмотрение функция

которая называется функцией Лапласа или интегралом вероятностей.

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

Ниже показан график функции Лапласа.

Функция Лапласа обладает следующими свойствами:

1) Ф(0) = 0;

2) Ф(- х) = - Ф(х);

3) Ф(¥) = 1.

Функцию Лапласа также называют функцией ошибок и обозначают erf x.

Еще используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Ниже показан график нормированной функции Лапласа.

27. Определения случайной величины, дискретной и непрерывной случайных величин.

Случайная величина — это величина, которая принимает в результате опыта одно из множества значений, причём появление того или иного значения этой величины до её измерения нельзя точно предсказать.

Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным. Дадим более точное определение:

Дискретной случайной величиной (ДСВ) называют такую величину, множество значений которой либо конечное, либо бесконечное, но счетное.

Непрерывной случайной величиной (НСВ) называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Множество возможных значений непрерывной случайной величины бесконечно и несчетно.

Способы задания закона распределения дискретной случайной величины

Законом распределения дискретной случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения.

При табличном способе задания закона распределения первая строка таблицы содержит возможные значения случайной величины (обычно в порядке возрастания), а вторая – соответствующие вероятности ():

Бернулли: Дискретная случайная величина имеет биномиальный закон распределения (закон распределения Бернулли), если она принимает целочисленные неотрицательные значения 0, 1, 2, 3, …, m, …, n с вероятностями, вычисляемыми по формуле Бернулли:

Пуассона: Дискретная случайная величина имеет закон распределения Пуассона с параметром , если она принимает целочисленные неотрицательные значения 0, 1, 2, 3, …, m, … с вероятностями, вычисляемыми по формуле Пуассона. Т. к. вероятность наступления события в каждом испытании мала (при ), закон распределения Пуассона еще называют законом редких событий.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...