Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Динамический (детерминированный) хаос




В классической равновесной термодинамике мерой хаоса служила энтропия. Понятие энтропии введено Клаузиусом. Трудно удержаться от соблазна процитировать «святое писание» - два первых закона термодинамики в формулировке Р. Клаузиуса (R. Clausius, 1865; по: Пригожин, Стенгерс, 1986):

Die Energie der Welt ist konstant (Энергия мира постоянна);

Die Entropie der Welt strebt einem Maximum zu (Энтропия мира стремится к максимуму).

Изолированные системы вследствие линейных термодинамических процессов эволюционируют к стационарному состоянию максимальной энтропии и неупорядоченности. Второй закон термодинамики описывает мир как непрерывно деградирующий, сползающий от порядка к молекулярному хаосу и тепловой смерти. «Законы природы разрешают только смерть» (Пригожин, Стенгерс, 1986) - полный хаос, «апофеоз частиц» (И. Бродский).

Возникновение диссипативных структур как переход противоположной направленности - от беспорядка, хаоса к порядку – весьма маловероятное событие по представлениям классической термодинамики. Однако эти процессы происходят и в неживой, и в живой природе. Возникновение диссипативных структур, самоупорядочение возможно лишь в открытых системах; при этом существенную роль играет диссипация, рассеивания энергии в открытой системе, находящейся в энергетическом потоке. Живые системы – открытые, далекие от равновесия, непрерывно обменивающиеся веществом и энергией со средой. Порядок клетки или организма репродуцируется на матричной основе предсуществовавшей упорядоченности, поддерживается и увеличивается до определенного предела за счет поглощения энергии и вещества из среды. Жизнь возникла и существует на границах сред, разделе физических фаз не случайно – здесь наиболее сильны конвекционные токи, потоки энергии и энтропии (Хайтун, 1996).

В последние десятилетия XX века понятие хаоса изменилось. Сразу же следует заметить, что динамический, или детерминированный хаос нелинейных динамических систем – это не хаос, понимаемый как полная дезорганизация и случайность событий. Современное понимание хаоса ближе к исходному древнегреческому: «хаос» - беспредельная неупорядоченная масса, из которой возникло все существующее.

Динамический (детерминированный) хаос – сложное непредсказуемое поведение детерминированной нелинейной системы. Оказалось, что простые системы (иногда - вызывающе простые модельные системы), состоящие из малого числа компонентови детерминированные правилами, не включающими элементов случайности, могут проявлять случайное поведение, достаточно сложное и непредсказуемое, причем случайность носит принципиальный, неустранимый характер. Такого рода случайность, непредсказуемость развития системы понимается как хаос.

Детерминированный хаос сочетает детерминированность и случайность, ограниченную предсказуемость и непредсказуемость и проявляется в столь разных явлениях как кинетика химических реакций, турбулентность жидкости и газа, геофизические, в частности, погодные изменения, физиологические реакции организма, динамика популяций, эпидемии, социальные явления (например, курс акций).

Прежде разделяли детерминированные системы, для которых был возможен прогноз на любой отрезок времени (подобно прогнозу затмений солнца) и стохастические системы, которые можно охарактеризовать лишь статистически. Теперь же появился новый класс объектов, формально детерминированных, но с поведением, прогнозируемым лишь на ограниченный отрезок времени. Оба полюса – порядок и хаос – не существуют в чистом виде, если понимать упорядоченные системы как полностью регулярные, детерминированные, предсказуемые, а неупорядоченные системы как совершенно нерегулярные, случайные, непредсказуемые. Примером систем с высокой степенью порядка и стабильности служат кристаллы; на противоположном полюсе располагается такие хаотические системы как газы.

Можно напомнить, что основы однозначного детерминизма в квантовой механике были подорваны принципом неопределенности В. Гейзенберга, устанавливающим невозможность измерения с заданной точностью одновременно координаты и импульса элементарной частицы. Тогда же, в 1927 году на конгрессе в Брюсселе происходил знаменитый спор Нильса Бора и Альберта Эйнштейна. Отрицание случайности А. Эйнштейн облек в форму известного высказывания: «Я не верю, что господь Бог бросает кости» (в несколько другой формулировке - “God casts the die, not the dice”: «Бог мечет жребий, а не кости»), на что Н. Бор ответил: «Не наша печаль – предписывать господу Богу, как ему следовало бы управлять этим миром». Ответом и вызовом однозначному детерминизму послужила и появившаяся к концу века книга И. Стьюарта “Does God play dice?” (Stewart, 1992), излагающая теорию катастроф.

Кажется уместным привести остроумное замечание И. Пригожина: если было бы возможно, зная состояние Вселенной в один произвольно выбранный миг, вычислить ее прошлое и будущее, как для простой предсказуемой системы, мир оказался бы грандиозной тавтологией (Пригожин, Стенгерс, 1986, с.126).

Теория динамического хаоса уничтожила разрыв между классической динамикой и статистической физикой: регулярное движение становится стохастическим вследствие всегда присутствующих небольших флуктуаций. Развитие теории динамического хаоса связано с именами А. Пуанкаре (H. Poincare), А.М. Ляпунова, А.А. Андронова, Э. Хопфа (E. Hopf), А.Н. Колмогорова, В.И. Арнольда.

Эволюция системы математически описывается векторным полем в фазовом пространстве – абстрактном пространстве динамических переменных системы, векторном поле в координатах переменных. Точка фазового пространства задает состояние системы, вектор в этой точке указывает направление изменения системы. Кривые последовательных состояний процесса, создаваемые изменением положения точки в фазовом пространстве, называются фазовыми траекториями, а их совокупность – фазовым портретом системы. Траектории поля, притягивающиеся к одному из центров притяжения, образуют область, называемую областью действия (бассейном) этого центра притяжения (Р. Том, 1968). Фазовое пространство – удобное средство для наглядного представления поведения динамической системы. На рис. 7 показаны фазовые портреты (нижний ряд) для системы с затухающими колебаниями (траектория, стремящаяся к положению равновесия), с постоянными колебаниями (замкнутая кривая) и более сложный случай системы, колеблющейся в лишенном строгой периодичности режиме. Установившиеся режимы движения, иными словами, множество точек (в простейшем случае – одна точка) в фазовом пространстве системы, к которым стремятся ее траектории, получили название аттракторов - они как бы привлекают, притягивают траектории в фазовом пространстве. В первом случае аттрактором оказывается неподвижная точка, во втором – предельный цикл, в третьем же – так называемый странный, или хаотический (стохастический) аттрактор (рис. 7, слева направо). Таким образом, аттракторы – геометрические структуры, характеризующие поведение системы в фазовом пространстве после достаточно длительного периода времени. Хаотические, странные аттракторы соответствуют непредсказуемому поведению систем, не имеющих строго периодической динамики, это математический образ детерминированных непериодических процессов. Странные аттракторы структурированы и могут иметь весьма сложные и необычные конфигурации в трехмерном пространстве.

 


 

Рис. 7. Последовательность изменений во времени (верхний ряд)

и фазовые портреты (нижний ряд) для трех различных систем

(Глейк, 2001)

 

Хотя в работах некоторых математиков ранее была установлена возможность существования странных аттракторов, впервые построение странного аттрактора (рис. 8) как решение системы дифференциальных уравнений осуществил в работе по компьютерному моделированию термоконвекции и турбулентности в атмосфере американский метеоролог Э. Лоренц (E. Lorentz, 1963). Конечное состояние системы Лоренца чрезвычайно чувствительно к начальному состоянию. Сам же термин «странный аттрактор» появился позже, в работе Д. Рюэлля и Ф. Такенса в (D. Ruelle, F. Takens, 1971: см. Рюэль, 2001) о природе турбуленции в жидкости; авторы отмечали, что размерность странного аттрактора отлична от обычной, или топологической. Позже Б. Мандельброт (B. Mandelbrot) отождествил странные аттракторы, траектории которых при последовательных вычислениях компьютера бесконечно расслаиваются, расщепляются, с фракталами.

 


 

Рис. 8. Аттрактор Лоренца (Кроновер, 2000)

 

Ограниченная предсказуемость положения точки в фазовом пространстве странного аттрактора иллюстрирована рис.9, изображающим аттрактор Лоренца, траектории точек и их положение с течением времени (Кратчфилд и др., 1987). 10 000 «меченых» точек сначала движутся по близким траекториям, но с течением времени их траектории расходятся по двум ветвям аттрактора и настолько «размазываются» по всему аттрактору, что точное предсказание положения какой-либо отдельной точки в данной системе становится невозможным - возможно лишь статистическое предсказание в пределах системы аттрактора.


 

Рис. 9. Расхождение траекторий отдельных точек

в системе аттрактора Лоренца (Кратчфилд и др., 1987)

 

Это иллюстрация динамического хаоса в данной системе с ограниченной предсказуемостью и принципиальной невозможностью точного прогноза ввиду случайности выбора траектории движения каждой точки по одной из двух ветвей аттрактора. Расхождение соседних траекторий приводит к неопределенности положения точки через некоторое время, создавая «облако неопределенности». Поведение системы предсказуемо на малом отрезке времени и непредсказуемо на достаточно большом отрезке - система начинает вести себя как хаотическая, для которой возможно лишь статистическое описание.

Таким образом, системы, поведение которых детерминируется правилами, не включающим случайность, с течением времени проявляют непредсказуемость за счет нарастания, усиления, амплификации малых неопределенностей, флуктуаций. Наглядный образ системы с нарастанием неопределенности – так называемый биллиард Я.Г. Синая: достаточно большая последовательность соударений шаров неизбежно ведет к нарастанию малых отклонений от исчисляемых траекторий (за счет не идеально сферической поверхности реальных шаров, не идеально однородной поверхности сукна) и непредсказуемости поведения системы.

В таких системах «случайность создается подобно тому, как перемешивается тесто или тасуется колода карт» (Кратчфилд и др., 1987). Так называемое «преобразование пекаря» с последовательным растягиванием и складыванием, бесконечным образованием складок – одна из моделей возникновения перехода от порядка к хаосу; при этом число преобразований может служить мерой хаоса.

Еще одна экспериментальная модель для изучения перехода к хаосу в потоке жидкости – два вращающихся в противоположных направлениях эксцентрических цилиндра (Оттино, 1989). С увеличением скорости вращения внутреннего цилиндра наблюдается переход от постоянной скорости к периодически изменяющейся, и затем - к апериодическому режиму. Небольшой разброс начальных значений, характеризующих положение окрашенных капель в вязкой жидкости, быстро растет на хаотических участках потока. Подобный застывший, структурный хаос можно наблюдать в причудливых рисунках светлых и темных слоев изверженных горных пород.

Переход от упорядоченного ламинарного течения к турбулентному, хаотическому движению наблюдается в жидкости с увеличением числа Рейнолдса, характеризующего соотношение сил инерции и вязкости. Потеря устойчивости состояний равновесия имеет множество приложений в самых различных областях: «механические, физические, химические, биологические и экономические системы теряют устойчивость на каждом шагу» (Арнольд, 1990, с. 27). Для таких систем принципиально невозможен долгосрочный прогноз.

Возможность предсказаний – одна из основных целей науки. До появления работы Э. Лоренца полагали, что сбор и обработка достаточно большого объема информации обеспечит точность долгосрочного прогнозирования погоды. Теперь представление об однозначной детерминированности сменилось пониманием принципиальной непредсказуемости поведения многих систем на достаточно большом отрезке времени, выяснились ограничения прогностических моделей, предсказуемая непредсказуемость динамики поведения сложных систем: предсказание границ, но не положения точки в их пределах.

Каскад следующих одна за другой бифуркаций существенно изменяет систему. Вероятность обратного хода событий крайне низка, эволюция системы становится необратимой. Необратимость, однонаправленность процессов эволюции и онтогенеза хорошо известна биологам. Необратимые процессы в открытых системах порождают высокие уровни организации, например, диссипативные структуры. Возникает новая интерпретация второго закона термодинамики: энтропия – не просто безостановочное соскальзывание к однородному состоянию, лишенному организации; энтропия может порождать порядок (Пригожин, Стенгерс, 1986).

Итак, нелинейные детерминированные системы, состоящие из немногих простых компонентов, могут вести себя неупорядоченно, хаотически.

Хаотические системы чувствительны к малым воздействиям, как начальным, так и во всех точках движения. В хаотическом мире трудно предсказать, какие вариации возникнут в данное время и в данном месте, ошибки и неопределенность нарастают экспоненциально с течением времени. Э. Лоренц назвал это явление эффектом бабочки: бабочка, взмахивающая крыльями в Айове, может вызвать лавину эффектов, которые могут достигнуть высшей точки в дождливый сезон в Индонезии («эффект бабочки» вызывает и ассоциацию с сюжетом рассказа Р. Бредбери «И грянул гром»: гибель бабочки в далеком прошлом изменяет мир будущего). «Небольшие различия в начальных условиях рождают огромные различия в конечном явлении... Предсказание становится невозможным» (А. Пуанкаре, по: Хорган, 2001). В соответствии с идеями эмерджентности и холизма, неожиданно возникающие свойства и поведение системы не могут быть поняты путем исследования ее частей.

Могут наблюдаться сложные, длительные хаотичные переходные режимы, скрытый порядок которых невозможно выявить без знания его алгоритма. Возможность существования «ложного» хаоса иллюстрируется (рис. 10) «возвращением Пуанкаре» (название такого рода явлений в статистической физике - у Пуанкаре есть теорема о возврате): изображение, переведенное в цифровую форму, растягивается по диагонали, выходящие за пределы рамки участки отрезаются и вставляются вновь; после определенного числа таких преобразований распознаваемое изображение исчезает, а затем вновь возникает из видимого хаоса.

Анализ механизмов перехода от порядка к хаосу в реальных системах и различных моделях выявил универсальность относительно немногих сценариев перехода к хаосу.

 


 

Рис. 10. «Возвращение Пуанкаре» (Кратчфилд и др., 1987)

 

Переход к хаосу может быть представлен в виде диаграммы бифуркаций. Простой путь перехода к хаосу как каскад бифуркаций – последовательность Фейгенбаума, или сценарий удвоения периода (рис.6). М. Фейгенбаум (M. Feigenbaum) выявил закономерность, определяющую поведение разнообразных нелинейных систем с последовательными бифуркациями удвоения периода: до определенного порога значений параметров система имеет периодический режим с периодом T, который удваивается при переходе через порог (период становится равным 2 T), затем при переходе через следующий порог снова удваивается, становится равным 4 T, и т.д. Последовательность значений параметра, соответствующих последовательных удвоениям, асимптотически ведет себя как геометрическая прогрессия со значением знаменателя 1/ 4,669...

Последовательность Фейгенбаума – один из типичных сценариев перехода от порядка к хаосу, от простого периодического режима к сложному апериодическому при бесконечном удвоении периода. Последовательность Фейгенбаума имеет самоподобную, фрактальную структуру – увеличение какой-либо области выявляет подобие выделенного участка всей структуре (рис. 6).

Итак, переходим к фрактальной геометрии – геометрии динамического хаоса. Нелинейная динамика и фрактальная геометрия тесно связаны, однако эти разделы науки развивались порознь, и их связь и тем более единство еще не полностью установлены.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...