Российские системы сертификации
Стр 1 из 3Следующая ⇒ КОНТРОЛЬНАЯ РАБОТА ПО ДИСЦИПЛИНЕ “МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ” Вариант ___16
Выполнил: студент группы 0031 Пенкин А.Н. Проверил: доцент кафедры ИИБМТ Морозов В.Н.
Рязань 2011 Обработка результатов многократных измерений - способ повышения
Измерения — один из важнейших путей познания природы человеком. Они играют огромную роль в современном обществе. Наука и промышленность не могут существовать без измерений. Практически нет ни одной сферы деятельности человека, где бы интенсивно не использовались результаты измерений, испытаний и контроля. Диапазон измерительных величин и их количество постоянно растут и поэтому возрастает и сложность измерений. Они перестают быть одноактным действием и превращаются в сложную процедуру подготовки и проведения измерительного эксперимента и обработки полученной информации. Другой причиной важности измерений является их значимость. Основа любой формы управления, анализа, прогнозирования, контроля или регулирования — достоверная исходная информация, которая может быть получена лишь путём измерения требуемых физических величин, параметров и показателей. Только высокая и гарантированная точность результатов измерений обеспечивает правильность принимаемых решений. Методической основой стандартизации являются математические методы, включая предпочтительные числа и ряды предпочтительных чисел, параметрические ряды, а также унификация деталей и узлов, агрегатирование, комплексная и опережающая стандартизация. Предпочтительные числа и ряды предпочтительных чисел необходимы для выбора оптимального ряда параметров и типоразмеров готовых изделий. Набор установленных значений параметров составляет параметрический ряд, который строится по системе предпочтительных чисел.
Прямые многократные измерения делятся на равно- и неравноточные. Равноточныминазываются измерения, которые проводятся средствами измерений одинаковой точности по одной и той же методике при неизменных внешних условиях. При равноточных измерениях среднее квадратичное отклонение (СКО) результатов всех рядов измерений равны между собой. Перед проведением обработки результатов измерений необходимо удостовериться в том, что данные из обрабатываемой выборки статистически подконтрольны, группируются вокруг одного и того же центра и имеют одинаковую дисперсию. Устойчивость изменений часто оценивают интуитивно на основе длительных наблюдений. Однако существуют математические методы решения поставленной задачи — так называемые методы проверки однородности. Применительно к измерениям рассматривается однородность групп наблюдений, необходимые признаки которой состоят в оценке несмещенности средних арифметических и дисперсий относительно друг друга. Задача обработки результатов многократных измерений заключается в нахождении оценки измеряемой величины и доверительного интервала, в котором находится ее истинное значение. Обработка должна проводится в соответствии с ГОСТ 8.207—76 ГСИ. «Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Общие положения».
Последовательность обработки результатов прямых многократных измерений Определение точечных оценок закона распределения результатов измерений. На этом этапе определяются: • среднее арифметическое значение х измеряемой величины; • СКО результата измерения Sx; • СКО среднего арифметического значения Sx̅. Грубые погрешности и промахи исключаются, после чего проводится повторный расчет оценок среднего арифметического значения и его СКО. В ряде случаев для более надежной идентификации закона распределения результатов измерений могут определяться другие точечные оценки: коэффициент асимметрии, эксцесс и контрэксцесс, энтропийный коэффициент.
Определение закона распределения результатов измерений или случайных погрешностей измерений. В последнем случае от выборки результатов измерений х1, х2, х3,-.., хn переходят к выборке отклонений от среднего арифметического ∆х1, ∆х2, ∆х3,..., ∆хn, где ∆xi = xi - х̅. Первым шагом при идентификации закона распределения является построение по исправленным результатам измерений xi, где I = 1, 2,..., n, вариационного ряда (упорядоченной выборки), а также уi, где уi = min(xi) и уn = mах(хi). В вариационном ряду результаты измерений (или их отклонения от среднего арифметического) располагают в порядке возрастания. Далее этот ряд разбивается на оптимальное число m, как правило, одинаковых интервалов группирования длиной h = (y1 + yn) / m. Оптимальным является такое число интервалов m, при котором возможное максимальное сглаживание случайных флуктуации данных сопровождается с минимальным искажением от сглаживания самой кривой искомого распределения. Для практического применения целесообразно использовать предложенные mmin = 0,55n0,4 и mmax = 1,25n0,4, которые получены для наиболее часто встречающихся на практике распределений с эксцессом, находящимся в пределах от 1,8 до 6, т.е. от равномерного до распределения Лапласа. Искомое значение m должно находится в пределах от mmjn до mmax, быть нечетным, так как при четном m в островершинном или двухмодальном симметричном распределении в центре гистограммы оказываются два равных по высоте столбца и середина кривой распределения искусственно уплощается. В случае, если гистограмма распределения явно двухмодальная, число столбцов может быть увеличено в 1,5-2 раза, чтобы на каждый из двух максимумов приходилось примерно по m интервалов. Полученное значение длины интервала группирования h всегда округляют в большую сторону, иначе последняя точка окажется за пределами крайнего интервала. Далее определяют интервалы группирования экспериментальных данных в виде ∆1 = (у1, y1 + h); ∆2= (y1 +h, y1 + 2h);....; ∆m = (yn - h; уn), и подсчитывают число попаданий nk (частоты) результатов измерений в каждый интервал группирования. Сумма этих чисел должна равняться числу измерений. По полученным значениям рассчитывают вероятности попадания результатов измерений (частости) в каждый из интервалов группирования по формуле pk= nk/n, где k=l, 2,..., m.
Проведенные расчеты позволяют построить гистограмму, полигон и кумулятивную кривую. Для построения гистограммы по оси результатов откладываются интервалы ∆k в порядке возрастания номеров и на каждом интервале строится прямоугольник высотой pk. В этом случае площадь под гистограммой равна единице. При увеличении числа интервалов и соответственно уменьшении их длины гистограмма все более приближается к гладкой кривой — графику плотности распределения вероятности. Полигон представляет собой ломаную кривую, соединяющую середины верхних оснований каждого столбца гистограммы Рисунок 1-Гистограмма, полигон (а) и кумулятивная кривая (б)
Эти точки при построении полигона соединяют между собой отрезками прямых линий. В результате совместно с осью х образуется замкнутая фигура, площадь которой в соответствии с правилом нормирования должна быть равна единице (или числу наблюдений при использовании частостей). Кумулятивная кривая— это график статистической функции распределения. Для ее построения по оси результатов наблюдений х (рисунок 1,б) откладывают интервалы ∆k в порядке возрастания номеров и на каждом интервале строят прямоугольник высотой p По виду построенных зависимостей может быть оценён закон распределения результатов измерений. Оценка закона распределения по статистическим критериям. При числе наблюдений n > 50 для идентификации закона распределения используется критерий Пирсона (хи-квадрат) или критерий Мизеса—Смирнова (ω2). При 50 > n > 15 для проверки нормальности закона распределения применяется составной критерий (d-критерий), приведённый в ГОСТ 8.207-76. При n < 15 принадлежность экспериментального распределения к нормальному не проверяется.
Определение доверительных границ случайной погрешности.Если удалось идентифицировать закон распределения результатов измерений, то с его использованием находят квантильный множитель zp при заданном значении доверительной вероятности Р. В этом случае доверительные границы случайной погрешности А = ±zpS. Определение границ неисключенной систематической погрешности θ результата измерений.Под этими границами понимают найденные нестатистическими методами границы интервала, внутри которого находится неисключенная систематическая погрешность. Она образуется из ряда составляющих: как правило, погрешностей метода и средств измерений, а также субъективной погрешности. Границы неисключенной систематической погрешности принимаются равными пределам допускаемых основных и дополнительных погрешностей средств измерений, если их случайные составляющие пренебрежимо малы. Доверительная вероятность при определении границ 6 принимается равной доверительной вероятности, используемой при нахождении границ случайной погрешности. Определение доверительных границ погрешности результата измерения ∆р. Данная операция осуществляется путем суммирования СКО случайной составляющей Sx̅ и границ неисключенной систематической составляющей θ в зависимости от соотношения θ/ Sx̅. Результат измерения записывается в виде х = х̅ ± ∆p при доверительной вероятности Р = Р. При отсутствии данных о виде функции распределения составляющих погрешности результаты измерений представляют в виде х, S-, при доверительной вероятности Р = Рд
Российские системы сертификации
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|