Основна теорема арифметики цілих невід’ємних чисел.
5. Основну теорему арифметики називають також теоремою про існування та єдиність розкладу будь-якого натурального числа на добуток простих множників. Ця теорема використовувалась ще у стародавній Греції, але була сформульована і доведена видатним німецьким математиком К.Гауссом у 1801 році. Теорема: будь-яке, більше за одиницю, натуральне число а, або просте, або може бути однозначно розкладене в добуток простих чисел з точністю до порядку розміщення співмножників. Доведення: доведення складається з двох частин. У першій частині доведемо існування такого розкладу. Якщо аєN і a>1, то можливі два випадки: а) число а – просте, тоді розклад існує; б) число а – складене, тоді воно має найменший простий дільник. Нехай це буде число р1. Виходячи із цього, маємо а
Не виключеним є випадок, коли деякий із множників в розкладі (1) повторюється, а тому в загальному випадку розклад числа на прості множники записують так:
У другій частині доведемо єдиність такого розкладу методом від супротивного, припустивши, що існує два різних розклади у вигляді (І), тобто а=р1·р2·р3·…·рк (ІІ) і а=q1·q2·q3·…·qn (III). Врахуємо, що р1<р2<р3<…<рк і q1<q2<q3<…<qn. У даних розкладах рі і qі – різні, але серед них будуть однакові. Для визначеності припустимо, що p1¹q1 i p1<q1. Утворимо нове число b=p1·q2·q3·…·qn (IV). Легко бачити, що число а в записі (1) ділиться націло на p1. Оскільки Доведена теорема є теоретичною основою представлення будь-якого натурального числа у вигляді добутку простих множників. Покажемо це на прикладі такої вправи: „Представити число 1224 у канонічному розкладі, тобто розкласти в добуток простих множників”. Розв’язання:
Читайте также: V. НЕГРИТЯНСКАЯ ОСНОВНАЯ РАСА Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|