Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Застосування рівнянь та їх систем до розв’язування текстових задач.




5. Досить часто розв’язати задачу арифметичним способом досить складно, а от методом складання рівнянь це зробити набагато простіше. При розв’язуванні задач методом складання рівнянь потрібно: 1) провести розбір задачі з метою вибору основного невідомого та виявлення залежності між величинами, а також вираження цих залежностей на математичній мові у формі двох алгебраїчних виразів (одне із них може бути заданим); 2) знайти основу для сполучення цих виразів знаком “=” та скласти рівняння; 3) знайти розв’язок одержаного рівняння; 4) з’ясувати чи немає серед розв’язків цього рівняння таких, які сторонні для задачі; 5) встановити чи вичерпують розв’язки рівняння всі розв’язки задачі. Всі ці етапи задачі логічно пов’язані між собою. Наприклад, при пошуку основи для сполучення двох виразів знаком рівності говориться як про особливий етап, але ж цілком зрозуміло, що на попередньому етапі вказані вирази утворюються не довільно, а із врахуванням можливості сполучити їх знаком рівності. В силу неподільності аналізу та синтезу, як методів дослідження, інакше і бути не може. Виявлення залежностей між величинами, переклад цих залежностей на математичну мову вимагає напруженої аналітико-синтетичної діяльності. Успіх в цій роботі залежить від того як учні знають в яких залежностях можуть знаходитися величини, а також як вони розуміють смисл відношень. Наприклад, смисл відношень, які виражені термінами: “пізніше на...”, “старший в... разів” тощо. Крім цього потрібне розуміння якою саме математичною дією чи властивістю дії чи якою залежністю між компонентами та результатом дії тощо може бути описане те чи інше конкретне відношення.

 

МОДУЛЬ 6.: «ВИРАЗИ. РІВНЯННЯ. НЕРІВНОСТІ. ФУНКЦІЇ».

Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».

ПЛАН.

1. Поняття нерівності з однієї змінною як предиката виду f(x)>g(x), де хєХ.

2. Рівносильні нерівності. Теореми про рівносильність нерівностей.

3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.

Література.

[1] – с. 238-293, 317-384; [2] – с. 53-59, 110-115, 294-355; [3] – с. 118-127.

1. Поняття нерівності з однієї змінною як предиката виду f(x)>g(x), де хєХ.

1. Одним із завдань курсу математики середньої школи є формування уявлень про рівняння, нерівності, їх системи і сукупності та формування умінь їх розв’язувати. Нерівності з однією змінною зустрічаються вже в курсі математики початкових класів. Саме тому вчитель повинен знати теоретичні основи питань, пов’язаних із нерівностями. Враховуючи сказане, розглянемо принципові питання. які відносяться до теорії нерівностей з однією та двома змінними з точки зору теорії предикатів. Відзначимо, що майже всі питання. які будуть розглядатися, є справедливими для будь-якого із знаків нерівностей: >, <, ≥, ≤.

Оскільки як в самій математиці, так і в її застосуваннях із нерівностями зі змінними доводиться мати справу не рідше, ніж із рівняннями, то, починаючи з першого класу на уроках математики розпочинають формувати уявлення дітей про числові нерівності та нерівності, що містять змінну. У початкових класах не ставиться завдання навчити учнів розв’язувати нерівності. У підручниках з математики для 1-4-х класів не знайдемо завдань типу „розв’язати нерівність”, „знайти множину розв’язків нерівності”, бо ці терміни в початкових класах не вводяться. Завдання вказаного виду формулюють так: „із заданих значень вибрати те, при якому нерівність правильна”, „підберіть два чи три таких значення, щоб нерівність була правильною” тощо.

Нерівності зі змінними в початкових класах розв’язуються або методом підбору, або методом зведення до рівняння. Наприклад, для нерівності 12·k<96 при використанні першого способу діти міркують приблизно так: якщо k=7, то12·7=84, 84<96. Отже, k=7 підходить. При використанні другого способу учні міркують так: замінимо нерівність 12·k<96 рівнянням 12·k=96. Розв’язавши його, маємо k=8. Оскільки добуток 12·k повинен бути меншим, ніж 96, то замість k слід підставляти числа менші за 8, тобто числа 7, 6, 5, 4, 3, 2, 1, 0.

Відносно нерівностей в математиці становляться наступні завдання: 1) довести нерівність, тобто показати, що нерівність правильна при будь-яких значеннях змінних, що входять у цю нерівність. У цьому випадку говорять, що потрібно довести нерівність; 2) розв’язати нерівність, тобто знайти всі ті значення змінних, при підставці яких у нерівність, ми отримуємо правильну числову нерівність. У цьому випадку говорять, що потрібно розв’язати нерівність.

Перейдемо до визначення сутності основних понять, пов’язаних із нерівностями. Розглянемо два предикати f(x) і g(х), які задані на множині X, По аналогії з рівняннями з однією змінною введемо означення нерівності.

Означення: предикат виду f(x)>g(x) (або f(x)<g(x), або f(x)≤g(x), або f(x)≥g(x)), заданий на множині X, називається нерівністю з однією змінною.

Аналогічно можна дати означення для нерівностей з будь-якою скінченною кількістю змінних. Так, по аналогії з попереднім можна ввести означення нерівності з двома змінними.

Означення: предикат виду f(x.y)>g(x.y) (або f(x.y)<g(x,y), або f(x,y)≤g(x,y), або f(x,y)≥g(x,y)), заданий на множині X, називається нерівністю з двома змінними.

Із теорії предикатів відомо, що кожен предикат пов’язаний із множиною, з якої можна вибирати значення змінної. Тоді кожна нерівність також пов’язана з множиною, яку прийнято називати областю допустимих значень або областю визначення.

Означення: множиною допустимих значень змінної або областю визначення нерівності називається така множина значень хєX, при яких нерівність має зміст.

Як відомо, область визначення предиката поділяється на дві підмножини: 1) множина істинності предиката, яка складається з таких хєХ, при підстановці яких у предикат отримуємо істинне висловлення; 2) множина хибності предиката, яка складається з таких хєХ, при підстановці яких у предикат отримуємо хибне висловлення. Оскільки нерівність є предикатом, то її область визначення також будемо поділяти на дві підмножини. Саме тому множину істинності нерівності будемо називати множиною розв’язків нерівності.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...