Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Схемы включения транзисторов




Всего таких схем применяется три: схема с общим эмиттером (ОЭ), схема с общим коллектором (ОК) и схема с общей базой (ОБ). Все эти схемы показаны на рисунках:

 

Самым распространенным включением транзистора по сравнению с ОК и ОБ является схема с общим эмиттером (ОЭ). Причина такой распространенности, прежде всего, высокий коэффициент усиления по напряжению и по току. Наиболее высокий коэффициент усиления каскада ОЭ обеспечивается когда на коллекторной нагрузке падает половина напряжения источника питания Eпит/2. Соответственно, вторая половина падает на участке К-Э транзистора. Это достигается настройкой каскада, о чем будет рассказано чуть ниже. Такой режим усиления называется классом А.

При включении транзистора с ОЭ выходной сигнал на коллекторе находится в противофазе с входным. Как недостатки можно отметить то, что входное сопротивление ОЭ невелико (не более нескольких сотен Ом), а выходное в пределах десятков КОм.

Если в ключевом режиме транзистор характеризуется коэффициентом усиления по току в режиме большого сигнала β, то в режиме усиления используется «коэффициент усиления по току в режиме малого сигнала», обозначаемый, в справочниках h21э. Такое обозначение пришло из представления транзистора в виде четырехполюсника. Буква «э» говорит о том, что измерения производились при включении транзистора с общим эмиттером.

Коэффициент h21э, как правило, несколько больше, чем β, хотя при расчетах в первом приближении можно пользоваться и им. Все равно разброс параметров β и h21э настолько велик даже для одного типа транзистора, что расчеты получаются лишь приблизительными. После таких расчетов, как правило, требуется настройка схемы.

Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя. Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки (читай одной партии). Для маломощных транзисторов этот коэффициент колеблется в пределах 100…1000, а у мощных 5…200. Чем тоньше база, тем выше коэффициент.

Схема исключительно проста. Входной сигнал подается в базу транзистора через разделительный конденсатор C1, и, будучи усиленным, снимается с коллектора транзистора через конденсатор C2. Назначение конденсаторов, - защитить входные цепи от постоянной составляющей входного сигнала (достаточно вспомнить угольный или электретный микрофон) и обеспечить необходимую полосу пропускания каскада.

Резистор R2 является коллекторной нагрузкой каскада, а R1 подает постоянное смещение в базу. С помощью этого резистора стараются сделать так, чтобы напряжение на коллекторе было бы Eпит/2. Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален.

Приблизительно сопротивление резистора R1 можно определить по простой формуле R1 ≈ R2 * h21э / 1,5…1,8. Коэффициент 1,5…1,8 подставляется в зависимости от напряжения питания: при низком напряжении (не более 9В) значение коэффициента не более 1,5, а начиная с 50В, приближается к 1,8…2,0. Но, действительно, формула настолько приблизительна, что резистор R1 чаще всего приходится подбирать, иначе требуемая величина Eпит/2 на коллекторе получена не будет.

Коллекторный резистор R2 задается как условие задачи, поскольку от его величины зависит коллекторный ток и усиление каскада в целом: чем больше сопротивление резистора R2, тем выше усиление. Но с этим резистором надо быть осторожным, коллекторный ток должен быть меньше предельно допустимого для данного типа транзистора.

Схема очень проста, но эта простота придает ей и отрицательные свойства, и за эту простоту приходится расплачиваться. Во – первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, - подбирай заново смещение, выводи на рабочую точку.

Во-вторых, от температуры окружающей среды, - с повышением температуры возрастает обратный ток коллектора Iко, что приводит к увеличению тока коллектора. И где же тогда половина напряжения питания на коллекторе Eпит/2, та самая рабочая точка? В результате транзистор греется еще сильнее, после чего выходит из строя. Чтобы избавиться от этой зависимости, или, по крайней мере, свести ее к минимуму, в транзисторный каскад вводят дополнительные элементы отрицательной обратной связи – ООС.

На рисунке показана схема с фиксированным напряжением смещения.

Казалось бы, что делитель напряжения Rб-к, Rб-э обеспечит требуемое начальное смещение каскада, но на самом деле такому каскаду присущи все недостатки схемы с фиксированным током. Таким образом, приведенная схема является всего лишь разновидностью схемы с фиксированным током.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...