Спинномозговой узел, спинной мозг, вегетативная нервная система
Нервная система обеспечивает регуляцию всех жизненных процессов организма и его взаимодействие с внешней средой, наряду с иммунной и эндокринной, относится к интегративным системам организма, выполняя ведущую роль в физиологической регуляции соматических органов и обеспечивая высшие психические функции: сознание, память, мышление. Гистогенез нервной системы. Источник развития нервной ткани - ней-роэктодерма, из которой образуются два основных зачатка: нервная трубка и нервный гребень. Из нервной трубки развиваются спинной и головной мозг. Из клеток нервного гребня - нейроциты и макроглия спинномозговых и вегетативных узлов, клетки диффузной эндокринной системы, мозговое вещество надпочечников, меланоциты. Развитие спинного мозга сопровождается разрастанием боковых стенок нервной трубки, в то время как элементы будущей крыши и дна спинного мозга значительно отстают в своём развитии. Просвет нервной трубки превращается в спинномозговой канал. Разрастание нервной трубки в мозговые пузыри в области будущего головного мозга протекает несколько замедленней. Это связано с неравномерным ростом отдельных частей передней части нервной трубки и повышением давления жидкости, образующейся в ней путём секреционного процесса. Так как давление жидкости направлено вдоль длинной оси нервной трубки, на её переднем конце образуются три вздутия или связанных между собой мозговых пузыря: передний мозг (prosencephalon), средний мозг (mesencephalon) и задний мозг (rhombencephalon). Передний мозговой пузырь подразделяется на два: зачаток большого, или конечного мозга – telencephalon, и зачаток промежуточного мозга – diencephalon, из боковых стенок которого развиваются глазные пузыри (позже бокалы) – зачатки сетчатки глаз. Средний мозговой пузырь, оставаясь неразделенным, даёт начало среднему мозгу. Задний мозговой пузырь подразделяется на зачатки мозжечка и моста (metencephalon) и продолговатого мозга (myelencephalon), без резкой границы переходящего в эмбриональный спинной мозг. Дальнейшее преобразование перечисленных отделов головного мозга заключается в неравномерном росте отдельных частей его стенок, образовании различных стенок и борозд.
Дизрафии представляет собой порок развития, связанный с неполным закрытием тканей мезодермального и эктодермального происхождения вдоль срединного шва (от греч. rhaphe — шов) — средней линии позвоночника. Проявлениями спинальной дизрафии являются расщепление дуг позвонков (spina bifida) и сагиттально расположенных мягких тканей, а также возникающие при этом различные варианты спинномозговых грыж, иногда дермоидные кисты, липомы, синдром «жесткой» конечной нити. Анатомически нервную систему делят на центральную (головной и спинной мозг) и периферическую (нервные стволы, узлы и окончания). С физиологической точки зрения она делится на автономную, или вегетативную, регулирующую деятельность внутренних органов, сосудов, желез, и соматическую, иннервирующую остальную часть организма. Рефлекторной дугой называется цепь нейронов, обеспечивающая проведение нервного импульса от рецептора чувствительного нейрона до эффекторного окончания в рабочем органе. Соматическая рефлекторная дуга состоит как минимум из 2 нейронов: I нейрон - чувствительный, его перикарион лежит в спинномозговом ганглии, длинный дендрит отходит на периферию, где заканчивается рецептором, аксон входит в задние рога спинного мозга, проходит в передний рог (или переключается на ассоциативный нейрон) и образует синапс со II нейроном; II нейрон - двигательный или эфферентный, его перикарион лежит в передних рогах спинного мозга, аксон через передние рога выходит из спинного мозга и идет к скелетной мышце, где образуется аксо-мышечный синапс.
Вегетативная нервная система подразделяется на 2 отдела - симпатический и парасимпатический. К аждый орган, как правило, получает и симпатическую, и парасимпатичеcкую иннервацию. Центры симпатической нервной системы находятся в боковых рогах грудного и верхнепоясничного отделов спинного мозга, а рефлекторная дуга состоит как минимум из 3 нейронов. I нейрон - чувствительный, его перикарион лежит в спинномозговом ганглии, длинный дендрит отходит на периферию, где заканчивается рецептором, аксон входит в задние рога спинного мозга, проходит в боковой рог (или переключается на ассоциативный нейрон) и образует синапс со II нейроном. II нейрон - называется преганглионарным, его перикарион и дендриты лежат в боковых рогах спинного мозга, аксон через передние рога выходит из спинного мозга и идет к симпатическому ганглию, где образует синапсы с III нейроном. III нейрон - называется постганглионарным или эфферентным, его перикарион и дендриты лежат в симпатических ганглиях (пре- и паравертебральные ганглии), а аксон выходит из ганглия и идет к иннервируемому органу, где образуются синаптические соединения. Центры парасимпатической нервной системы находятся в боковых рогах крестцового отдела спинного мозга и вегетативных ядрах III, VII, IX, X пар черепномозговых нервов, а рефлекторная дуга также состоит как минимум из 3 нейронов. I нейрон - чувствительный, его перикарион лежит в спинномозговом ганглии, длинный дендрит отходит на периферию, где заканчивается рецептором, аксон входит в мозг, или в боковые рога спинного мозга и образует синапс со II нейроном. II нейрон - называется преганглионарным, его перикарион и дендриты лежат в боковых рогах крестцового отдела спинного мозга или продолговатом мозге, мосте, аксон выходит из спинного мозга или в составе черепно-мозговых нервов идет к парасимпатическому ганглию, где образует синапсы с III нейроном. III нейрон - называется постганглионарным; эфферентный, его перикарион и дендриты лежат в парасимпатических ганглиях, а аксон выходит из ганглия и идет к иннервируемому органу или уже находится в органе, где образуются синаптические соединения.
Преганглионарные нейроны симпатической и парасимпатической вегетативной рефлекторных дуг обычно холинергические. Постганглионарные нейроны в симпатической рефлекторной дуге адренергические, а в парасимпатической холинергические. Адренергические структуры выявляют гистохимическими методами по специфическому светло-зеленому свечению норадреналина в ультрафиолетовом свете после предварительной обработки ткани в парах параформальдегида, холинергические - по содержанию в них фермента холиэстеразы. Морфологически они отличаются ультраструктурной организацией их синаптических пузырьков в терминалях: медиатор адренергических терминалей норадреналин содержится в пузырьках диаметром 50-90 нм с плотной центральной гранулой размером 28 нм; ацетилхолин - в прозрачных пузырьках меньшего диаметра (30-50 нм). Нервный центр, совокупность нейронов, более или менее строго локализованная в нервной системе и участвующая в осуществлении рефлекса, в регуляции той или иной функции организма или одной из сторон этой функции. В простейших случаях он состоит из нескольких нейронов, образующих обособленный узел (ганглий). У высокоорганизованных животных нервные центры входят в состав центральной нервной системы и могут состоять из многих тысяч и даже миллионов нейронов. По характеру морфофункциональной организации различают: 1. Нервные центры ядерного типа – в которых нейроны располагаются без видимой упорядоченности (вегетативные ганглии, ядра спинного и головного мозга) 2. Нервные центры экранного типа – в которых нейроны выполняющие однотипные функции, собраны в виде отдельных слоев, сходных с экранами на которые проецируются нервные импульсы (кора полушарий большого мозга, кора мозжечка). В нервных центрах происходят процессы конвергенции и дивергенции нервного возбуждения, функционируют механизмы обратной связи. Конвергенция — схождение различных путей проведения нервных импульсов к меньшему числу нервных клеток. На нейронах могут иметься окончания клеток разных типов, что обеспечивает конвергенцию влияний из различных источников.
Дивергенция — образование связей одного нейрона с большим числом других, на деятельность которых он оказывает влияние, обеспечивая перераспределение импульсов с иррадиацией возбуждения. Механизмы обратной связи дают возможность нейронам самим регулировать величину поступающих к ним сигналов благодаря связям их аксонных коллатералей со вставочными клетками. Последние оказывают влияние (обычно тормозное) как на нейроны, так и на терминали конвергирующих к ним волокон. Нервные стволы - нервы могут состоять из миелиновых или безмиелиновых волокон или из тех и других. В них различают несколько соединительнотканных оболочек: 1) эндоневрий, окружающий отдельное нервное волокно; 2) периневрий, окружающий пучок нервных волокон; З) эпиневрий, окружающий нерв в целом. Нервный узел - это скопление нервных клеток вне центральной нервной системы. Нервные узлы могут быть чувствительными и вегетативными. Они окружены с поверхности соединительнотканной капсулой, от которой отходят внутрь узла прослойки. Нейроны узла могут быть псевдоуниполярными (спинномозговой узел) и мультиполярными (вегетативные нервные узлы). Нейроны, образующие спинномозговой узел, располагаются группами на его периферии. В вегетативных узлах нейроны располагаются диффузно. Кроме нейронов в узле находятся также нервные волокна и глиоциты. Симпатические нервные узлы (нервные ганглии) лежат обычно за пределами органа, а парасимпатические - в стенке органа (интрамурально). Нейроны спинномозговых узлов чувствительные, а вегетативных - эфферентные. Спинномозговой узел имеет веретеновидную форму и покрыт капсулой из плотной волокнистой соединительной ткани. По его периферии находятся плотные скопления тел псевдоуниполярных нейронов, а центральная часть занята их отростками и расположенными между ними тонкими прослойками эндоневрия, несущими сосуды. Псевдоуниполярные нейроны характеризуются сферическим телом и светлым ядром с хорошо заметным ядрышком. Выделяют крупные и мелкие клетки, которые, вероятно, различаются видами проводимых импульсов. Цитоплазма нейронов содержит многочисленные митохондрии, цистерны гранулярной эндоплазматической сети, элементы комплекса Гольджи, лизосомы. Каждый нейрон окружен слоем прилежащих к нему уплощенных клеток олигодендроглии (мантийными глиоцитами, или клетками-сателлитами) с мелкими округлыми ядрами; снаружи от глиальной оболочки имеется тонкая соединительнотканная оболочка. От тела псевдоуниполярного нейрона отходит отросток, разделяющийся Т-образно на афферентную (дендритную) и эфферентную (аксональную) ветви, которые покрываются миелиновыми оболочками. Афферентная ветвь заканчивается на периферии рецепторами, эфферентная в составе заднего корешка вступает в спинной мозг. Так как переключения нервного импульса с одного нейрона на другой в пределах спинномозговых узлов не происходит, они не являются нервными центрами. Морфологическая классификация нейронов :
I.Крупные А-нейроныс размером тела 61-120 мкм. Дендриты толщиной 12-20 мкм обладают самой высокой скоростью проведения импульса - от 75 до 120 м/сек. Они образуют чувствительные нервные окончания суставов, сухожилий, поперечнополосатых мышечных волокон, т.е. являются про-приорецепторами. Аксоны этих клеток заканчиваются на клетках ядра Кларка, тонком и клиновидном ядрах продолговатого мозга. 2.Средние В-нейроны с размером тела 31-60 мкм. Дендриты толщиной 6-12 мкм, их терминали формируют тельца Фатер-Пачини и осязательные рецепторы Мейснера, а также вторичные окончания мышечных веретен. Нервный импульс проходит со скоростью 25-75 м/сек. Аксоны образуют синапсы на нейронах собственного ядра заднего рога, нейронах ядра Кларка, тонком и клиновидном ядрах. 3. Малые С-нейроны с диаметром тела 15-30 мкм. Их дендриты толщиной от 0,5 до 5 мкм проводят импульс со скоростью 0,5-30 м/сек. Эти волокна образуют температурные и болевые экстерорецепторы. Аксоны формируют синапсы на нейронах Роландова вещества и собственного ядра заднего рога спинного мозга. Нейрохимическая классификация: 1. ГАМК-ергические нейроны. 2. Глутамат-ергические нейроны. 3. Холинергические нейроны. 4. Аспартатергические нейроны. 5. Нитроксидергические нейроны. 6. Пептидергические нейроны (вещество Р, кальцитонин, соматостатин, холецистокинин, VIP и Y-пептид). Общий план строения симпатических и парасимпатических нервных узлов сходен. Вегетативный узел покрыт соединительнотканной капсулой и содержит диффузно или группами расположенные тела мультиполярных нейронов, их отростки в виде безмиелиновых или, реже, миелиновых волокон и эндоневрий. Тела нейронов имеют неправильную форму, содержат эксцентрично расположенное ядро, окружены (обычно не полностью) оболочками из глиальных клеток-сателлитов (мантийных глиоцитов). Часто встречаются многоядерные и полиплоидные нейроны. В симпатических ганглиях кроме этого имеются МИФ-клетки (малые интенсивно-флуоресцирующие клетки) небольших размеров нервные клетки, которые являются тормозными и регулируют проведение импульсов с преганглионарных волокон на нейроны ганглия, от которых отходят постганглионарные волокна. В интрамуральных узлах описаны нейроны трех типов: · длинноаксонные эфферентные нейроны (клетки Догеля I типа) численно преобладают. Это крупные или средних размеров эфферентные нейроны с короткими дендритами и длинным аксоном, направляющимся за пределы к рабочему органу, на клетках которого он образует двигательные или секреторные окончания; · равноотростчатые афферентные нейроны (клетки Догеля II типа) содержат длинные дендриты и аксон, уходящий за пределы данного ганглия в соседние и образующий синапсы на клетках I и III типов. Эти клетки, по-видимому, входят в качестве рецепторного звена в состав местных рефлекторных дуг, которые замыкаются без захода нервного импульса в центральную нервную систему. Наличие таких дуг подтверждается сохранением функционально активных афферентных, ассоциативных и эфферентных нейронов в трансплантированных органах (например, сердце); · ассоциативные клетки (клетки Догеля III типа) — местные вставочные нейроны, соединяющие своими отростками несколько клеток I и II типа, морфологически сходные с клетками Догеля II типа. Дендриты этих клеток не выходят за пределы узла, а аксоны направляются в другие узлы, образуя синапсы на клетках I типа. Энтеральная нервная система (от греч. enteron — кишка), часть вегетативной нервной системы позвоночных, координирующая работу мышечных элементов внутренних органов, обладающих ритмичною активностью. Представлена подсерозным, межмышечным и подслизистым сплетениями из чувствитительных двигательных нейронов и клеток — водителей ритма (пейсмекерных), расположенных в стенке пищеварительного тракта (пищевод, желудок, кишечник), сердца, мочевого пузыря. Медиаторы — пуриновые основания, ацетилхолин, норадреналин и др. (всего ок. 20). Энтеральная нервная система характеризуется наибольшей степенью функциональной автономии и способностью к интегративным процессам по сравнению с симпатической и парасимпатической нервными системами. Терминальные нервные сплетения содержат три типа нейронов: афферентные (чувствительные) нейроны, вставочные нейроны (интернейроны), и эфферентные (двигательные) нейроны. Афферентные нейроны своими механорецепторами и хеморецепторами воспринимают физическую и химическую информацию об объекте управления и передают ее интернейронам. Это информация о степени наполнения полого органа, о химическом составе его содержимого и другая информация. Интернейроны на основе прошлой и настоящей информации формируют управляющие сигналы и с упреждением передают её эфферентным нейронам. Эфферентные нейроны интегрируют информацию, поступающую от интернейронов, и посылают управляющие сигналы к гладкомышечным волокнам стенки органа, гладкомышечным волокнам стенки кровеносных сосудов и лимфатических сосудов, секреторным эндокринным, экзокринным и другим клеткам. Пейсмекерные нейроны не имеют синаптических входов от других нейронов и выполняют функцию водителей ритма (осцилляторов). Полагают, что эти клетки генерируют опорный сигнал, обеспечивающий координацию активности функциональных элементов нервных сетей. Аганглиоз это врожденное заболевание, при котором в стенке дистальных отделов толстой кишки (чаще в ректосигмоидном отделе) отсутствуют внутрикишечные нейроны (то есть интрамуральные ганглии). Этот так называемый аганглионарный участок находится в состоянии постоянного спазма, поскольку нет тормозных влияний, в норме оказываемых интрамуральными нейронами на гладкие мышцы кишки. Спинноймозг состоит из серого вещества, расположенного центрально, вокруг спинномозгового канала, и окружающего его белого вещества. Серое вещество состоит из расположенных группами мультиполярных нейронов, нейроглиоцитов, безмиелиновых и тонких миелиновых волокон. Скопления нейронов, имеющих общую морфологию и функцию, называются ядрами. Серое вещество на срезе имеет форму бабочки и представлено мультиполярными нейронами трех основных типов: 1. Изодендритические нейроны - филогенетически наиболее древний тип с немногочисленными длинными и прямыми слабо ветвящимися дендритами. Располагаются в промежуточной зоне, в небольших количествах есть в передних и задних рогах. Отвечают за интероцептивную чувствительность. 2.Идиодендритические нейроны - с большим количеством густо ветвящихся дендритов, переплетающихся и имеющих вид куста или клубка. Эти нейроны характерны для двигательных ядер передних рогов, в частности студневидного вещества и ядра Кларка. Отвечают за болевую, тактильную и проприоцептивнуто чувствительность. 3. Аллодендритические нейроны - переходная форма, по степени развития дендритного дерева занимает промежуточное положение. Располагаются в дорсальной части передних и вентральной части задних рогов, типичны для собственного ядра заднего рога. В центре серого вещества располагается центральный канал, содержащий спинномозговую жидкость. Верхний конец канала сообщается с IV желудочком, а нижний образует концевой желудочек. В сером веществе различают передние, боковые и задние столбы, а на поперечном срезе они, соответственно, передние, боковые и задние рога. Спинной мозг человека содержит около 13 млн нейронов, из них 3% – мотонейроны, а 97% – вставочные. Функционально нейроны спинного мозга можно разделить на 4 основные группы: 1) мотонейроны, или двигательные – клетки передних рогов, аксоны которых образуют передние корешки; 2) интернейроны – нейроны, получающие информацию от спинальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприорецептивные раздражения; 3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков; 4) ассоциативные клетки – нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегментами. В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1-2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга – эта сеть образует так называемое студенистое вещество и выполняет функции ретикулярной формации спинного мозга. Средняя часть серого вещества спинного мозга содержит преимущественно короткоаксонные веретенообразные клетки (промежуточные нейроны), выполняющие связующую функцию между симатическими отделами сегмента, между клетками его передних и задних рогов. Мотонейроны. Аксон мотонейрона своими терминалями иннервирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон, тем более дифференцированные, точные движения выполняет мыщца. Мотонейроны спинного мозга функционально делят на α- и α-мотонейроны образуют прямые связи с чувствительными путями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10-20 в секунду). γ-мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежуточные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в секунду). Интернейроны. Эти промежуточные нейроны, генерующие импульсы с частотой до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга в обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функцией интернейронов является торможение активности нейронов, что обеспечивает сохранение направленности пути возбуждения. Возбуждение интернейронов, связанных с моторными клетками, оказывает тормозящее влияние на мышцы-антагонисты. Нейроны симпатического отдела автономной системы расположены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3-5 в секунду). Нейроны парасимпатического отдела автономной системы локализуются в сакральном отделе спинного мозга и являются фоновоактивными. Белое вещество не содержит тел нейронов и состоит преимущественно из миелиновых волокон, составляющих восходящие и нисходящие пути спинного мозга. Выростами серого вещества (передними, задними и боковыми рогами) белое вещество разделено на три части — передние, задние и боковые канатики, границами между которыми служат места выхода передних и задних спинномозговых корешков. В действительности рога представляют собой непрерывные столбы серого вещества, тянущиеся вдоль спинного мозга. Среди нейронов спинного мозга можно выделить три вида клеток: корешковые, внутренние и пучковые. Аксоны корешковых клеток покидают спинной мозг в составе его передних корешков. Отростки внутренних клеток заканчиваются синапсами в пределах серого вещества спинного мозга. Аксоны пучковых клеток проходят в белом веществе обособленными пучками волокон, несущими нервные импульсы от определенных ядер спинного мозга в его другие сегменты или в соответствующие отделы головного мозга, образуя проводящие пути. Отдельные участки серого вещества спинного мозга значительно отличаются друг от друга по составу нейронов, нервных волокон и нейроглии. Нейроны ядер передних рогов содержат двигательные нейроны, аксоны которых выходят через передний корешок и иннервируют скелетную мускулатуру. Интернейроны, на которые переключается информация с волокон задних корешков, находятся в студенистом веществе заднего рога, его собственном ядре, ядре Кларка и ядрах задних канатиков, которые лежат на границе спинного и продолговатого мозга и рассматриваются как продолжение задних рогов. В промежуточной части серого вещества находится медиальное промежуточное ядро, аксоны нейронов которого входят в боковой канатик той же стороны и поднимаются к мозжечку. В боковых рогах на уровне грудных и крестцовых сегментов спинного мозга располагается латеральное промежуточное ядро, которое относится к симпатической и парасимпатической нервной системе. Аксоны его нейронов покидают спинной мозг через передние корешки, отделяются от них в виде белых соединительных ветвей и идут к симпатическим ганглиям. Задние рога богаты диффузно расположенными вставочными клетками. Это мелкие мультиполярные ассоциативные и комиссуральные клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же стороны (ассоциативные клетки) или противоположной стороны (комиссуральные клетки). В задних рогах различают губчатый слой, желатинозное вещество, собственное ядро заднего рога и грудное ядро Кларка. Нейроны губчатой зоны и желатинозного вещества осуществляют связь между чувствительными клетками спинальных ганглиев и двигательными клетками передних рогов, замыкая местные рефлекторные дуги. В центре заднего рога находится собственное ядро заднего рога, аксоны нейронов которого переходят на противоположную сторону в боковой канатик и идут к мозжечку или в зрительный бугор. В основании рога располагается грудное ядро или ядро Кларка, аксоны его нейронов входят в боковой канатик той же стороны и поднимаются к мозжечку. Нейроны ядра Кларка получают информацию от рецепторов мышц, сухожилий и суставов (проприоцептивная чувствительность). Сенсорная чувствительность имеет в спинном мозге пространственную ориентацию. Экстероцептивная чувствительность - болевая, температурная и тактильная - ориентирована на нейроны студневидного вещества и собственного ядра заднего рога. Висцеральная чувствительность - преимущественно на нейроны промежуточной зоны. Проприоцептивная - на ядро Кларка, тонкое и клиновидное ядра. В процессе развития спинного мозга из нервной трубки нейроны группируются в 10 слоях, или пластинах Рекседа. При этом I-V пластины соответствуют задним рогам, VI-VII пластины - промежуточной зоне, VIII-IX пластины - передним рогам, X пластина - зона около центрального канала. Такое деление на пластины дополняет организацию структуры серого вещества спинного мозга, основывающейся на локализации ядер. На поперечных срезах более отчетливо видны ядерные группы нейронов, а на сагиттальных - лучше видно пластинчатое строение, где нейроны группируются в колонки Рекседа. Каждая колонка нейронов соответствует определенной области на периферии тела. Функция спинного мозга заключается в том, что он служит координирующим центром простых спинальных рефлексов (например, коленного рефлекса) и автономных рефлексов (сокращения мочевого пузыря), а также осуществляет связь между спинальными нервами и головным мозгом. Тяжелая травма позвоночника, осложненная повреждением спинного мозга в виде его компрессии, размозжения, с частичным или полным разрывом, остается одной из актуальных медико-социальных проблем современной медицины, т.к. ведет к глубокой инвалидизации пострадавших. В настоящее время не существует действительно эффективных методов лечения травматического повреждения спинного мозга, особенно когда после травмы прошли месяцы и годы. Полагают, что задержка регресса клинических проявлений травмы спинного мозга связана с крайне низким восстановительным потенциалом нервной ткани, а также с тем, что нейрогенез, т.е. формирование нервных клеток, уже завершается к моменту рождения, после которого новые нейроны практически не образуются. Принято считать, что нейроны ЦНС не обладают митотической активностью, т.к. четко установлена неспособность их к репликационному синтезу ДНК как в процессе постнатального развития, так и при интенсификации регенеративной реакции, за исключением нейронов коры ольфакторной области. Между тем, было установлено, что нейроны головного и спинного мозга не лишены способности к регенерации своих отдельных структурных элементов, что осуществляется путем гиперплазии ядерных и цитоплазматических органелл. За последние 10 лет получен ряд фактов, показывающих способность нейронов, в том числе и центральных, к регенерации своих аксонов. Вместе с тем, неспособность нейронов индуцировать удовлетворительную регенерацию своих аксонов после травмы связывают не столько с принципиальной невозможностью регенерации в ЦНС, сколько с наличием в ткани спинного мозга естественных молекулярных механизмов сдерживания спрутинга поврежденных аксонов. В начальный период, от момента травмы до ~ 24 часов, вслед за механическим, первичным повреждением ткани спинного мозга, уже через несколько минут начинается этап вторичного метаболического повреждения. Здесь играют роль механизмы и ишемического повреждения вследствие нарушения спинального кровообращения, тромбоза, спазма и нарушения проницаемости капилляров вокруг очага первичной травмы, с последующим вазогенным и позднее цитотоксическим отеком ткани мозга. Зона повреждения и гибели вещества мозга расширяется за счет высвобождающихся протеолитических ферментов, поступления ионов Са2+ в нейроны и глиальные клетки, активации ПОЛ и таких процессов, как гидролитическое расщепление белково-липидных структур. Высвобождение простаноидов, метаболитов арахидоновой кислоты — лейкотриенов, тромбоксана, простагландинов, а также нейтрофильная инфильтрация, сопровождающаяся выбросом в ткань миелопероксидазы и эластазы, расширяют ареал повреждения с формированием в соседних с первичной травмой участках спинного мозга новых очагов некроза в его строме и паренхиме. Позднее (более 24-х часов до 7-ми суток) зона травматического некроза, заполненная детритом, очищается макрофагами и нейтрофилами, а также за счет развития гиперплазии микроглиоцитов, астроцитов, появления дренажных форм олигодендроцитов, новообразования сосудов. Выше и ниже места травмы продолжается хроматолиз и гибель отдельных нейронов за счет апоптоза. На некоторых нервных волокнах появляются колбы роста. Завершающий этап продолжается до трех месяцев и более, когда происходит окончательная организация дефекта путем формирования глиального рубца, за счет гиперплазии микроглии и астроцитов, с частым формированием посттравматической кисты. В этот период морфологические исследования продолжают манифестировать разрастание аксонов на несколько миллиметров в сторону или вглубь рубца с конусов роста на концах. На этом этапе формируется кортикальная дезорганизация мотонейронов коры больших полушарий. Завершается рубцовая организация бывших очагов некроза, происходит окончательное формирование кист в зоне повреждения. В самом начале ХХ века возникло предположение о возможности устранения структурных поломок и восстановления контактов между нейронами путем трансплантации нервной ткани в зону повреждения. При трансплантации ткани эмбрионального спинного мозга в спинной мозг молодых и взрослых животных наблюдается: • приживление и дифференцировка мотонейронов эмбрионального спинного мозга в белом и сером веществе спинного мозга взрослых животных, • миграция трансплантированных нейронов на расстояние до 4-6 мм, • способность иннервировать мышечную ткань отростками через мостик из периферического нерва, • замещение недостающих нейронов вентральных рогов, • проникновение аксонов, происходящих из трансплантата, в мозг реципиента на расстояние до 5 мм, • миелинизация волокон спинного мозга при трансплантации участков эмбрионального спинного мозга в спинной мозг молодых мышей с дефицитом миелина. Большое число исследований посвящено трансплантации эмбриональной нервной ткани в поврежденный спинной мозг, так трансплантаты ткани коры мозга 15-суточных эмбрионов крыс в место одностороннего поперечного пересечения спинного мозга взрослых крыс интегрируются с мозгом реципиента без образования рубца, содержат пирамидные и звездчатые нейроны и аксоны, а волокна перерезанного спинного мозга хозяина пересекают границу с трансплантатом, прорастают его и растут дальше по ходу проводников. После неонатального одностороннего повреждения шейного отдела спинного мозга трансплантаты спинного мозга l4-суточных эмбрионов способствуют аксональному росту и специфическому супраспинальному входу к проприоспинальным нейронам. Пересаженная ткань эмбрионального спинного мозга предупреждает гибель аксотомизированных руброспинальных нейронов и поддерживает аксональные коллатерали к ростральным отделам ЦНС. Трансплантаты спинного мозга 14-суточных эмбрионов, помещенные в область гемисекции спинного мозга реципиента сразу после рождения, через 8-12 недель улучшают восстановление локомоторных функций (основная опора лапы, латеральное вращение задних лап, время и ошибки при пересечении сетчатой платформы). При трансплантации в предварительно поврежденный и интактный спинной мозг взрослых крыс фрагментов грудного отдела спинного мозга 15-сугочных эмбрионов крыс и 7-недельных эмбрионов человека отмечается дифференцировка клеточных элементов и образование нервных и глиальных клеток. Лучше приживаются трансплантаты в сером веществе неповрежденного мозга грубый соединительно-тканный рубец на границе трансплантата и тканей мозга реципиента образуется при нейротрансплантации в поврежденный спинной мозг. Эффективной оказывается трансплантация периферических нервов взрослых животных в задний рог поврежденного спинного мозга взрослых животных, которая способствует выживанию нейронов, росту аксонов, установлению межнейронных связей, увеличению скорости регенерации спинальных аксонов до 2,14 мм/сутки. Минимальная начальная задержка скорости регенерации поврежденных спинальных аксонов в периферическом нейротрансплантате у взрослых крыс при аутотранеплантации седалищного нерва в задний рог поврежденного спинного мозга составляет 4 суток, максимальная скорость врастания - 2,14 мм/сут. Лучшее прорастание аксонов ЦНС при повреждении среднегрудного отдела спинного мозга наблюдается при трансплантации в место повреждения ткани эмбрионалыюго спинного мозга, а не фрагментов периферического нерва. В первом случае аксоны прорастают трансплантат и достигают поясничных сегментов спинного мозга, тогда как во втором - заканчиваются в пределах трансплантата. Большой оптимизм в отношении лечения повреждений спинного мозга связывают с успехами трансплантации шванновских клеток с целью восстановления процесса миелинизации аксонов. Следует особо отметить внутримозговую трансплантацию ганглиев периферической нервной системы. Внутримозговая аллотрансплантация спинальных ганглиев новорожденным крысятам с применением иммунодепрессантов, обеспечивает переживание нейронов этих ганглиев на протяжении 12 недель. При трансплантации спинальных ганглиев в большое полушарие молодых крыс от крыс такого же возраста через 5 недель после трансплантации нейроны трансплантата имеют нормальную униполярную форму и обычные размеры. Более развитыми являются трансплантаты, располагающиеся в перивентрикулярной области. При внутри мозговой трансплантации спинальных ганглиев взрослым крысам выявлен рост аксонов переживших: нейронов. Изучение аллотрансплантации фрагмента верхнего шейного узла от новорожденных и трехмесячных крыс линии Спрог-Доли на дорсальную поверхность спинного мозга и аналогичной аутотрансплантации показало существование зависимости результатов трансплантации от возраста донора. Трансплантаты от неонатальных животных подвергаются дегенераuии, а трансплантаты от 2-З-недельных и 3-месячных доноров переживают и устанавливают связи с мозгом реципиента. При этом наблюдается: · прорастание сосудов мозга реципиента в ганглии, · миграция нейронов реципиента в ткань ганглия, · притягивание трансплантированным ганглием тел и отростков астроцитов реципиента. Таким образом, при трансплантации спинальных ганглиев имеет место ангиотропное,
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|