Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Таштагольский горный техникум

Федеральное агенство по образованию РФ

Государственное образовательное учреждение

Среднего профессионального образования РФ

Таштагольский горный техникум

Рассмотрено цикловой комиссией Утверждаю:

«____» _______________________2009г. Зам. директора по УР

Председатель ________________________ «____» ________________2009г.

 

Экзаменационные вопросы по дисциплине «Рудничный транспорт» для специальности 140613

1. Классификация рудничного транспорта В зависимости от условий эксплуатации и конструктивных исполнений все средства рудничного транспорта, используемые на рудных шахтах и карьерах, можно классифицировать по принципу действия, способу перемещения груза, виду грузонесущего органа, конструкции тягового органа и способу передачи тягового усилия, времени работы на одном месте, конструктивным признакам. По принципу действия средства рудничного транспорта подразделяют на установки непрерывного действия, перемещающие грузы непрерывным потоком с загрузкой и разгрузкой при движении рабочего органа, и периодического действия, загрузку и разгрузку которых производят при полной остановке транспортных установок или на малой скорости их перемещения. Работа транспортных установок периодического действия характеризуется периодами во времени или циклами.

По способу перемещения груза и виду грузонесущего органа различают транспортные установки, на которых груз перемещается: по неподвижным наклонным желобам или почве под действием силы веса или принудительным волочением; на подвижных грузонесущих элементах, например, на ленте конвейера, в кузове вагонетки или автомобиля, ковше погрузочно-транспортной машины; по качающимся и вибрационным желобам под действием инерции; по неподвижным желобам или трубам в рабочей водной среде и неподвижным трубам в воздушной среде.

В транспортных установках могут применяться различные тяговые органы: гибкие (ленты, которые одновременно выполняют функции тягового и несущего органа, канаты, цепи); колеса жесткие, взаимодействующие с рельсовым путем, и эластичные, обрезиненные или с пневмошинами, взаимодействующие с почвой или дорожным покрытием; гусеничные механизмы.

В зависимости от типа и конструкции тягового органа тяговое усилие — управляемая внешняя сила, создаваемая приводом при взаимодействии с опорами и приложенная к тяговым органам — может передаваться: трением между приводным барабаном и лентой или между приводным шкивом и канатом; зацеплением между приводной звездочкой и тяговой цепью; навивкой концевого каната на барабан лебедки; сцеплением колес с рельсами или почвой; рабочей средой — в гидро- и пневмотранспортных установках; силой гравитации—в установках, транспортирующих груз под действием его силы веса; силой инерции — в качающихся и вибрационных конвейерах.

По виду привода и подводимой энергии различают транспортные установки с электрическим приводом, с питанием через контактный провод, гибкий кабель или от аккумуляторных батарей, дизельным, дизель-электрическим, пневматическим, гироскопическим приводом.

По времени работы рудничного транспорта на одном месте различают: с а м о ходи ые установки, передвигающиеся постоянно вместе с грузом (погрузочно-транспортные машины, автосамосвалы); передвижные, которые по условиям технологии разработки перемещают груз периодически через небольшие промежутки времени (скреперные лебедки, забойные конвейеры); полустационарные, перемещающие груз через относительно большие промежутки времени, чем передвижные; стационарные, характеризуемые длительной (более 1,5 лет) эксплуатацией на одном рабочем месте (конвейерный или локомотивный транспорт по капитальным выработкам).

На предприятиях горно-рудной промышленности применяют различные виды транспортных машин, отличающихся между собой по конструктивным признакам. Так, при подземной разработке крепких руд в качестве основных видов транспорта широко используют доставку под действием силы веса, скреперные установки, самоходные погрузочные и погрузочно-транспортные машины, подземные автосамосвалы, вибрационные питатели и конвейеры, электровозную откатку, гидро- и пневмотранспортные установки, подвесные канатные дороги с кольцевым движением, а в качестве вспомогательных видов подземного транспорта — монорельсовые и канатные дороги, различные самоходные установки. При разработке мягких руд широко используют скребковые и ленточные конвейеры, самоходные вагоны. На открытых разработках широко применяются железнодорожный, автомобильный, комбинированный и другие виды транспорта.

К рудничному транспорту относится также различное вспомогательное оборудование: затворы, вагоноопрокидыватели, толкатели, лебедки, путевое оборудование и др.

 

2. Транспортирование горной массы под действием собственного веса Перемещение грузов под действием собственного веса, или самотечная доставка, основано на скатывании или сползании груза по наклонной плоскости (по почве очистного пространства, металлическим желобам, деревянному или бетонному настилу, трубам) или на свободном падении по вертикали (по рудоспускам).

Преимуществами этого вида доставки являются: простота устройства, отсутствие электромеханического оборудования, относительно высокая производительность, возможность использования транспортных выработок в качестве аккумулирующих емкостей. Недостатки: значительный износ доставочных устройств и выработок, возможное разубоживание доставляемой руды, зависимость работы от свойств доставляемой руды (кусковатость, влажность и др.).

Доставка грузов под действием собственного веса широко применяется на очистных работах в забоях рудных шахт, при закладке выработанного пространства, проведении восстающих выработок, подаче бетонной смеси по скважинам в период строительства шахты, в технологических комплексах поверхности шахт и т. д. Благодаря простоте и высокой производительности доставки под действием собственного веса при выборе системы разработки стремятся использовать именно этот способ доставки руды из очистного пространства.

Наибольшее распространение получила доставка руды под действием собственного веса непосредственно по очистному пространству, например, при отработке крутопадающих месторождений с подэтажным или этажным принудительным обрушением, при донном и торцовом выпусках руды, по рудоспускам. Почти весь объем подземной добычи железных и апатитовых руд и больше половины добываемых руд цветных металлов доставляют таким способом от места отбойки на подэтажные выработки, по, которым далее руду транспортируют различными средствами рудничного транспорта к рудоспускам или околоствольному двору.

Для систем разработки с магазинированием в блоках и с донным выпуском руды предусматривают специальные выпускные выработки, а пункты выпуска руды оборудуют затворами или питателями. Очистное пространство либо поддерживается естественным образом при устойчивых окружающих породах, либо заполняется обрушенными породами по мере выпуска руды.

При отработке крутопадающих месторождений с выемкой этажным или, чаще, подэтажным обрушением производят торцовый выпуск руды в выработку (подэтажный штрек), по которому руду доставляют самоходными транспортными машинами или конвейерами. С целью обеспечения непрерывного истечения руды с наименьшим ее разубоживанием породой в призабой-ном пространстве над подэтажным штреком обычно оставляют козырек-потолочину. Погашение подэтажного штрека производят в отступающем порядке по мере отбойки руды (см. рис. 3.2). Кроме этого широко применяют доставку руды самотеком при отработке рудного тела наклонными слоями с закладкой выработанного пространства.

При разработке мощных и средней мощности рудных тел руду с вышележащих горизонтов на нижележащие доставляют самотеком по вертикальным или наклонным рудоспускам, которые располагают в рудном теле, боковых породах или в выработанных пространствах подлежащих закладке. Применяют рудоспуски с креплением и, чаще, без крепления. Так как крепь быстро изнашивается, рудоспуски стараются по возможности располагать в устойчивых породах.

 

 

3. Рудоспуски, люки, затворы Устройство, располагаемое в нижней части выпускной воронки или рудоспуска, через которое производят выпуск ипогрузку горной массы, называется люком. Люки оборудуют затворами или питателями, предназначенными для управления грузопотоком горной массы. Затворы обеспечивают только перекрытие и регулирование подачи горной массы, а питатели, кроме того, равномерную и непрерывную ее подачу со значительно большей производительностью.

Конструкцию люка выбирают в зависимости от объема горной массы, пропускаемой через данный люк, ее гранулометрического состава и влажности, требуемой производительности и вместимости кузова загружаемого вагона. К конструкции люка предъявляют следующие требования: прочность, обеспечение безопасной и надежной работы без просыпи на почву и полноты загрузки кузовов вагонов, возможность более простого способа ликвидации образующихся над люком заторов.

Люк состоит из днища, бортов, лобовины, отбойника, затвора и привода управления затвором. Воспринимающее большие нагрузки днище изготовляют из заделанных в бетон рельсов, стальных листов толщиной до 25 мм или броневых плит толщиной до 80 мм. Лобовину и отбойник также выполняют из рельсов или из дерева, которое обшивают металлом. Угол наклона днища в зависимости от свойств выпускаемой горной массы составляет 40—65°.

Управление затвором может быть ручным или механическим. Наибольшее распространение получили затворы с пневматическими приводами (пневмоцилиндрами), пульт управления которыми располагают у погрузочного полка или в откаточной выработке.

Затворы, применяемые для оборудования люков, можно разделить по принципу действия на две группы: с отсечением струи горной массы и с созданием подпора струи. К первой группе относятся шиберные, секторные, пальцевые и цепные затворы, ко второй — лотковые. Кроме того, применяют комбинированные затворы — сочетание секторного, пальцевого или цепного затворов с лотковым.

Преимущества всех затворов — простота конструкции, недостатки — трудность ликвидации заторов руды, образующихся над люком. Затворы вполне удовлетворительно работают при крупности отдельных кусков выпускаемой горной массы до 400 мм (максимальная крупность — не более 600 мм).

Шиберный затвор (рис. 12.3, а), представляющий собой плоскую задвижку, которую перемещают в направляющих, применяют при выпуске среднекусковой горной массы невысокой крепости. Основной недостаток шиберного затвора — перекос задвижки, что вызывает большие сопротивления при ее открывании и закрывании и просыпь.

Секторные затворы могут быть с верхней отсечкой — секторный обратный (рис. 12.3, б), с нижней отсечкой — секторный прямой (рис. 12,3, в) и двухсекторные (рис. 12.3, г). Секторные затворы обеспечивают наиболее плотное закрытие выпускных отверстий люков. Односекторные затворы обычно применяют при крупности выпускаемой горной массы 200—300 мм, двухсекторные — при крупности 400—500 мм.

Односекторный затвор с верхней отсечкой обеспечивает возможность регулирования потока горной массы при неполном открывании, но в момент закрытия возможно защемление от дельных кусков. Односекторный затвор с нижней отсечкой обеспечивает более плотное закрытие без защемления отдельных кусков руды.

Двухсекторный затвор объединяет преимущества односекторных затворов с верхней и нижней отсечкой. При погрузке открывают и закрывают только нижний сектор (см. рис. 12.2), а верхний находится в приподнятом на 200—300 мм положении и служит для регулирования потока и пропуска отдельных крупных кусков при дополнительном его подъеме. Разновидностью секторных затворов является челюстной затвор (рис. 12.3, г).

Пальцевый затвор (рис. 12.3, д) состоит из шарнирно закрепленных 5—7 пальцев, изготовленных из рельсов или двутавров. Каждый палец, независимо от других, под действием силы тяжести ложится на крупный кусок и зажимает его на плоскости лотка, закрывая тем самым выпускное отверстие люка. Пальцы сверху объединены отрезками цепей, которые через трос соединены со штоком пневмоцилиндра управления затвором. Пальцевые затворы применяются при загрузке вагонов с кузовом вместимостью до 4 м3 рудой крупностью до 600 мм (для вагонов большей вместимости возможна загрузка руды большей крупности).

Цепной затвор (рис. 12.3, е) состоит из отдельных отрезков круглозвенной цепи длиною до 1,5 м, подвешенных в верхней части на горизонтальном стержне, а снизу (по концам) снабженных грузами. Цепи поднимают через щель пневмоцилиндром. По сравнению с пальцевым затвором цепной затвор проще по конструкции, надежнее в работе, лучше удерживает мелочь, однако при его использовании затрудняется ликвидация заторов руды.

В лотковом затворе регулирование потока выпускаемой руды производят путем изменения угла наклона лотка. Лотковые затворы применяют для поперечной и продольной загрузки вагонов рудой различной крупности.

Комбинированные затворы состоят из двух затворов, например пальцевого и лоткового (рис. 12.4) или цепного и лоткового. Один затвор отсекает поток руды, другой — регулирует по ток и исключает переполнение вагонов рудой. Такие комбинированные затворы применяют при неравномерной кусковатости выпускаемой руды.

 

4. Правила безопасности при эксплуатации доставки под действием собственного веса Так как перемещение горной массы осуществляется под действием силы тяжести и, по существу, неуправляемо, вопросам эксплуатации и техники безопасности данного вида доставки необходимо уделять особое внимание.

При эксплуатации действующие выпускные отверстия должны быть заполнены отбитой рудой, а недействующие — перекрыты. Расположение выпускных отверстий, выходящих на горизонт грохочения или скреперования, определяют по проекту. При расположении выпускных выработок, выходящих в доставочную выработку одна против другой, выпуск можно вести только из одной выпускной выработки при условии, что самопроизвольный выпуск руды из второй выработки исключается.

При выпуске под действием собственного веса происходит зависание руды в горловинах выпускных выработок по причине заклинивания выработки (дучки) негабаритными кусками или заклинивания в результате определенной комбинации отдельных габаритных и негабаритных кусков, слеживаемости при длительных перерывах выпуска и др. Зависания ликвидируют взрыванием зарядов, устанавливаемых на шестах в выпускных выработках, специальными гранатометами, пневмоимпульсными устройствами (рис. 12.5, а). Пневмоимпульсные устройства позволяют ликвидировать зависания с помощью сжатого воздуха, а также, насыщая рудную массу воздухом, способствуют предупреждению сводообразования.

Рис. 12.5. Схема пневмоимпульсного устройства (а) и план горизонта выпуска с установкой в дучке пневмоимпульсного устройства (б)

Пневмоимпульсное устройство (пневмопушка) включает цилиндрический корпус 1, вспомогательный цилиндр 2, обратный клапан 3, направляющие 4, запорный клапан 5, сопло 6 и кран управления 8.

Работа пневмопушки осуществляется следующим образом: через кран управления 8 сжатый воздух из шахтной магистрали 7 поступает во вспомогательный цилиндр 2, при этом запорный клапан 5 закрывает сопло 6 (трубопровод), и воздух через обратный клапан 3 поступает в корпус 1 пневмопушки. При открывании крана 8 и выпуске воздуха из полости вспомогательного цилиндра 2 запорный клапан 5 резко отходит от сопла 6, после чего сжатый воздух из корпуса 1 пневмопушки по трубопроводу 6 поступает к месту зависания руды.

Пневмоимпульсное устройство 1 устанавливают в специальной нише 9, пройденной с вентиляционной сбойки 10 (рис. 12.5, б). От пневмоимпульсного устройства через отверстие между нишей 9 и дучкой 11 пропускают сопло 6 длиной 3,5—4 м, которое заглубляют в зону завала руды в дучке 11.

К пневмоимпульсному устройству через отверстие, пробуренное с откаточного горизонта 12, подводят трубу 7 для наполнения устройства сжатым воздухом и трубу 13 для управления устройством с помощью крана 8, вынесенного на рабочее место 14 машиниста виброконвейера 15.

Использование пневмоимпульсных устройств способствует увеличению производительности выпуска и доставки руды и безопасности работ.

Вo избежание падения людей необходимо ограждать устье рудоспусков барьерными решетками. Для предохранения погрузочных устройств от прямых ударов обязательно наличие в рудоспуске буферного слоя руды. Если в выработках над рудоспуском ведутся взрывные работы, то рудоспуск должен быть заполнен рудой над люком на высоту не менее 3 м.

Механизмы, используемые на выпуске руды, необходимо оборудовать дистанционным и автоматизированным управлением, а также пылеподавляющими установками.

 

5. Основные элементы и принцип действия скреперной установки Скреперная лебедка действует следующим образом (рис. 7.5). Вращение от редуктора 1 передается центральному валу 2, на котором жестко закреплены солнечные шестерни 3 и 9, находящиеся в зацеплении с сателлитами 4 и 10, свободно посаженными на водила 7 и 12. Сателлиты, в свою очередь находятся в зацеплении с венцовыми шестернями 5 и 11, наружные обода которых охватываются тормозными устройствами 6. Водила 7 и 12 жестко скреплены с барабанами 8 и 13, которые свободно посажены на центральном валу 2.

При выключении тормозных устройств 6 шестерни 3 и 9 вращаются по часовой стрелке, а сателлиты 4 и 10 и венцовые шестерни 5 и 11 — против часовой стрелки. При этом барабаны 8 и 13 не вращаются, так как планетарный редуктор в данном случае выполняет роль простой зубчатой передачи с паразитной шестерней.

При затормаживании венцовой шестерни 5 сателлиты 4, вращаясь относительно солнечного колеса 3, увлекают во вращение водило 7 вместе с барабаном 8, на который наматывается головной канат. Одновременно происходит свободное сматывание хвостового каната с барабана 13. При затормаживании венцовой шестерни 11 происходит вращение барабана 13 и обратное движение скрепера.

установка включает в себя скреперную лебедку 1, скрепер 2, головной 3 и хвостовой 4 канаты, концевые и поддерживающие блоки 5. При работе скрепер совершает периодические возвратно-поступательные движения: порожний скрепер перемещается в сторону забоя с помощью хвостового каната, от забоя — с помощью головного каната. Внедряясь в разрыхленную горную массу, скрепер самозагружается и доставляет ее волоком по почве очистной или подготовительной выработки до места разгрузки.

Рис. 7.1. Доставка руды скреперными установками: а - в рудоспуск; б - то же с безлюковой загрузкой вагонеток, в - из подготовительного забоя с загрузкой вагонеток через передвижной полок

При доставке руды скреперными установками из очистных забоев разгрузку руды производят либо в рудоспуски 6, либо через погрузочный полок 7 в вагоны 8. Такую загрузку вагонов называют безлюковой. Широко применяют скреперные установки при проведении горных выработок с загрузкой горной массы через передвижной полок 9 в вагонетки или конвейер.

 

6. Типы, конструкции скреперов Скреперы по конструктивному исполнению подразделяются на гребковые, ящичные, гребково-ящичные и совковые.

Для доставки крупнокусковых абразивных руд широко применяются гребковые скреперы (рис. 7.3, аг). Ящичные скреперы (рис. 7.3, д) применяют для доставки мелкокусковой горной массы невысокой крепости. Гребково-ящичные скреперы отличаются от односекционных жестких гребковых скреперов наличием небольших боковых стенок и применяются для доставки среднекусковой горной массы повышенной влажности.

По способу изготовления различают литые, сварные и комбинированные скреперы, по исполнению — неразборные и разборные, по расположению режущих кромок — односторонние и двухсторонние.

К конструкции скрепера предъявляют такие основные требования как обеспечение полного и быстрого его заполнения, высокая прочность, возможно меньшее сопротивление перемещению, устойчивость при движении по неровной почве выработки.

Гребковый скрепер (см. рис. 7.3, а) состоит из корпуса 1, представляющего собой заднюю стенку, рабочая кромка которой снабжена сменным лезвием 2, выполненным из износостойкой хромоникелевой стали, боковых тяг 3 и двух серег 4 и 5. для крепления головного и хвостового канатов. Благодаря такой конструкции обеспечивается хорошее внедрение гребкового скрепера в крупнокусковую горную массу, но ввиду отсутствия боковых стенок возможны некоторые потери руды по трассе доставки.

Гребковые скреперы выполняют односторонними (см. рис. 7.3, а) или двухсторонними (см. рис. 7.3, б) с двумя рабочими лезвиями. Двухсторонние скреперы в случае переворота в процессе движения по навалу крупнокусковой руды не требуют восстановления их в прежнее положение, однако применение их возможно только в выработках значительной высоты.

Гребковый шарнирно-складывающийся скрепер (см. рис. 7.3, в) обеспечивает хорошее внедрение и заполнение. При холостом ходе благодаря складыванию задней стенки уменьшается сопротивление перемещению скрепера. Он редко опрокидывается и проходит через небольшой просвет под кровлей выработки над навалом руды.

Многосекционные гребковые скреперы выполняют жесткими или шарнирно-складывающимися (см. рис. 7.3, г). Такие скреперы при относительно небольшой ширине обеспечивают большую производительность, чем односекционные, и применяются в выработках шириной 1,6—2 м.

Ящичный скрепер (см. рис. 7.3, д) состоит из задней стенки с режущим лезвием и двух боковых стенок, благодаря которым достигаются меньшие потери доставляемой горной массы по сравнению с гребковым скрепером. Однако вследствие наличия боковых стенок обеспечивается хорошее внедрение ящичного скрепера только в разрыхленную мелкокусковую горную массу. Ящичные скреперы широко применяются для доставки калийных руд.

Все типы скреперов имеют буквенные обозначения, например, гребковые односекционные жесткие — СГ, гребковые многосекционные жесткие — СГМ, гребковые односекционные шар-нирно-складывающиеся — СГШ, ящичные — СЯ, совковые — СС. Главный параметр скрепера — расчетная геометрическая вместимость в кубических метрах, указываемая после буквенного обозначения, например

7. Лебедки скреперных установок

8. Канаты, блоки скреперных установок Канаты, применяемые в скреперных установках, должны обладать высокой прочностью, гибкостью и износостойкостью. Обычно используют шестипрядные канаты двойной свивки с органическим сердечником крестовой свивки (проволоки в прядях и пряди каната свиты в противоположных направлениях), так как они меньше подвержены кручению по сравнению с канатами односторонней свивки, в которых направление навивки проволок в прядях и навивки прядей в канате совпадают. В зависимости от типа свивки прядей различают канаты с точечным касанием отдельных проволок между слоями прядей (типа ТК), линейным касанием (типа ЛК) или с комбинированным точечно-линейным касанием ТЛК. Пряди используемых в горной промышленности канатов сплетают из стальной светлой или оцинкованной проволоки с расчетной прочностью 1570—1960 МПа. Пряди по отдельным слоям сплетают из проволок одинакового (канат ЛК-О) или разного (канат ЛК-Р) диаметра. Канаты с линейным касанием отдельных проволок между слоями типа ЛК более гибкие, износостойкие и выдерживают большее число изгибов по сравнению с канатами типа ТК.

Условные обозначения канатов крестовой сливки, используемых в скреперных лебедках, 6×19+1 о. с. или 6×36+1 о. с. (первая цифра — число прядей в канате, вторая — число проволок в пряди плюс один органический сердечник). Диаметр каната (от 14 до 28 мм) выбирают в зависимости от мощности скреперной лебедки.

При доставке крепкой абразивной руды канаты быстро изнашиваются, поэтому расход их в среднем составляет от 25 до 60 кг на 1000 т доставляемой руды.

Блоки скреперной установки (рис. 7.6, а) должны быть прочными, легкими, обеспечивать простую запасовку и снятие каната, а также пропуск каната, связанного узлом, быть удобными для переноски и закрепления. Диаметр блока должен быть не менее 15—18 диаметров каната. В скреперных установках применяют блоки диаметром 200—400 мм.

В зависимости от места установки различают блоки концевые и поддерживающие. Концевые блоки, закрепляемые в конце скреперной установки и огибаемые под большим углом хвостовым канатом, испытывают большие нагрузки. Поддерживающие блоки устанавливают по трассе скреперования для подвешивания хвостового каната.

Крепление блоков производят с помощью штырей (рис. 7.6, б), канатных анкеров (рис. 7.6, в), удерживаемых забитыми в шпуры клиньями, иногда — с помощью петли каната на стойках (рис. 7.6, г) или отрезка цепи (рис. 7.6, д).

 

9. Расчет скреперных установок Основными расчетными параметрами скреперной установки являются производительность, диаметр канатов, мощность лебедки.

 

10.Общие сведения о конвейерном транспорте

11.Схемы вибрационных питателей и конвейеров Одним из путей интенсификации и концентрации очистных работ является создание поточной технологии, при которой комплекс горных машин позволяет осуществить непрерывность процессов выпуска, доставки, погрузки, транспортирования и подъема руды. Создание поточной технологии на всех или на отдельных транспортных звеньях горного предприятия невозможно без применения конвейерного транспорта, обеспечивающего непрерывность грузопотока, ритмичность работы и повышение производительности труда при наиболее низкой энергоемкости и трудоемкости процессов доставки и транспортирования руды.

Применение конвейерного транспорта при подземной отработке крутопадающих месторождений крепких руд позволяет сократить число рудоспусков в отрабатываемых блоках и объем проходческих работ, а также сроки подготовки и отработки1 блоков. Особенно целесообразно применение конвейерного транспорта при разработке мощных месторождений крепких руд с использованием систем с массовым обрушением руды,, позволяющим осуществлять интенсивную отработку блока.

При подземной разработке некрепких неабразивных калийных и марганцевых руд возможна полная конвейеризация транспорта руды от забоя до обогатительной фабрики.

Основными преимуществами конвейерного транспорта являются: непрерывность потока и высокая производительность; большая длина отдельных конвейеров или конвейерных линий и возможность транспортирования под углами 18°; небольшие поперечные размеры става конвейера, допускающие его установку в горных выработках небольшого сечения; возможность монтажа конвейеров в выработках, пройденных по почве неспокойно залегающих пластов; возможность полной автоматизации конвейерных установок с централизованным управлением; повышение безопасности и улучшение условий труда.

Основные недостатки конвейерного транспорта: сложность доставки абразивных крупнокусковых грузов и необходимость предварительного дробления крепких руд; интенсивный износ гибких грузонесущих органов; высокая стоимость оборудования и его монтажа; необходимость дополнительной транспортной системы для доставки вспомогательных грузов.

 

12.Типы, конструкции вибрационных питателей и конвейеров

13.Схемы ленточных конвейеров В ленточном конвейере транспортирование горной массы осуществляется на конвейерной ленте, выполняющей функции тягового и несущего органа. Замкнутая бесконечная лента 1 (рис. 15.1, а) огибает головной приводной 2 и хвостовой натяжной 3 барабаны. Лента поддерживается по длине конвейера стационарными роликоопорами 4 и 5, причем расстояние между роликоопорами для верхней грузовой ветви в 2—2,5 раза меньше, чем для нижней порожней ветви. Загрузка возможна практически в любой точке по длине конвейера. Обычно ленточные конвейеры загружаются в хвостовой части через загрузочную воронку 6, а разгружаются при сходе ленты с головного барабана. Возможна разгрузка ленточного конвейера в промежуточных пунктах с помощью плужковых сбрасывателей или разгрузочных тележек. В зависимости от назначения и условий эксплуатации ленточные конвейеры оснащают дополнительными устройствами для очистки ленты и барабанов и улавливания ленты в случае ее обрыва (на наклонном конвейере). Для контроля за работой и автоматизации конвейеров устанавливают различные датчики и приспособления.

Puc. 15.1. Схемы ленточных конвейеров и их приводов

Преимуществами ленточных конвейеров являются: высокая производительность, большая длина как в одном ставе, так и всей конвейерной линии; относительная простота конструкции; значительно меньшие масса и удельная энергоемкость по сравнению со скребковыми конвейерами; высокая надежность, безопасность и возможность полной автоматизации работы. Недостатки: ограничение по крупности транспортируемой горной массы (до 500 м), необходимость прямолинейной установки конвейера в плане, ограниченный угол наклона (с гладкой лентой при транспортировании вверх — до 18°, вниз — до 16°), высокая стоимость и относительно небольшой срок службы конвейерной ленты.

Лента конвейера приводится в движение силами трения между лентой И приводным барабаном. Соотношение натяженийв набегающей на привод ветви ленты Sнаб исбегающей с привода Sсб при угле обхвата приводного барабана лентой α (рис. 15.1, б) и коэффициенте трения между лентой и барабаном μ

Sнаб ≤ Sсбeμα

где е — основание натурального логарифма.

Величину еμα называют обычно тяговым фактором. Чем: больше тяговый фактор, тем большее тяговое усилие развивает привод. Увеличение тягового фактора возможно путем повышения коэффициента трения μ (например, футеровкой поверхности приводного барабана резиной) и угла обхвата α (например, при установке двух приводных барабанов с суммарным расчетным углом обхвата α = α1 + α2. где α1 и α2 — углы обхвата барабанов привода лентой).

Применяют ленточные конвейеры с двухбарабанным приводом с S-образной запасовкой ленты на барабанах (рис. 15.1, в), когда один барабан привода огибается рабочей (грязной) стороной ленты, а другой — нерабочей (чистой) стороной, и ленточные конвейеры с двумя приводными барабанами, огибаемыми лентой только с чистой стороны (рис. 15.1, г). Возможна установка трех приводных барабанов: два в головной части и один в хвостовой.

 

14.конструкции конвейерных лент Лента является наиболее дорогостоящим и ответственным элементом конвейера. Стоимость ее составляет 50% от стоимости конвейера, а иногда и более. Лента состоит из каркаса, передающего тяговые усилия, верхних и нижних обкладок и бортов, предохраняющих каркас ленты от механических повреждений ипроникновения влаги. В отечественной горно-добывающей промышленности наиболее широко применяют многопрокладочные резинотканевые (рис. 15.2, а, б) и резинотросовые (рис. 15.2, в, г) ленты.

Рис. 15.2. Конструкция конвейерных лент: 1 — прокладки; 2 — верхняя рабочая обкладка; 3 — нижняя обкладка; 4 — брекерная ткань; 5 — трос; 6 — предохранительная прокладка; 7 — резиновый наполнитель

Для шахтных подземных конвейеров используют многопрокладочные ленты (табл. 15.1). Каркас этих лент состоит из ряда тканевых прокладок, между которыми расположен тонкий слой резины (сквидж) толщиной 0,2—0,3 мм. Нити тканевых прокладок, направленные вдоль ленты и воспринимающие тяговые усилия, называются основными, а поперек — уточными, служащими для придания ленте поперечной жесткости. Прокладки со всех сторон защищены огнестойкой резиной. Толщина верхней обкладки составляет 6—10 мм, нижней — 2÷3,5 мм.

В многопрокладочных лентах, предназначенных для транспортирования крупнокусковых скальных грузов, под верхней обкладкой располагают защитную (брекерную) прокладку (см. рис. 15.2, б), обеспечивающую предохранение от пробоя прокладок каркаса крупными кусками и увеличивающую прочность связи верхней рабочей обкладки с прокладками каркаса.

Тканевые прокладки отечественных лент изготавливают из комбинированных тканей (полиэфир/хлопок) типа БКНЛ-65 прочностью по основе 65 Н/мм ширины одной прокладки, а также на основе синтетических полиамидных волокон прочностью на разрыв 100—400 Н/мм (типа ТА-100, ТК-200, ТА-400, ТК-400 и др.). Число прокладок в ленте i = l÷6, прочность ткани прокладки по утку составляет 30—40% от прочности по основе.

 

15.Приводная станция ленточного конвейера Приводная станция ленточного конвейера включает 1,2 и, значительно реже, 3 приводных барабана, которые обеспечивают ленте необходимое тяговое усилие. На коротких конвейерах применяют однобарабанный привод (см. рис. 15.1, а), на конвейерах длиной 300—500 мм и более — двухбарабанный привод, с S-образной запасовкой ленты на барабанах (см. рис. 15.1, в). Приводные барабаны кинематически жестко связаны с редуктором и приводятся от одного электродвигателя. Редуктор привода обычно трехступенчатый. Двигатель с редуктором соединяется эластичной муфтой. Привод вместе с выносным разгрузочным барабаном смонтирован на раме. Раму полустационарных конвейеров устанавливают на почву без фундамента и закрепляют распорными стойками.

На коротких ленточных конвейерах возможно использование мотор-барабанов, в которых ротор и статор электродвигателя и планетарный редуктор смонтированы внутри обечайки барабана. Привод в таком исполнении компактен, но мощность его ограничена.

Обычно в приводах ленточных конвейеров малой и средней мощности используют электродвигатели с короткозамкнутым ротором.

На мощных ленточных конвейерах применяют двухбарабанный привод с запасовкой ленты, обеспечивающей обхват барабанов чистой стороной ленты (см. рис. 15.1, г). Приводная станция (рис. 15.3) включает в себя два отдельных блока, каждый из которых состоит из приводного 1 и отклоняющего 2 барабанов, огибаемых лентой 3. Приводной барабан 1 приводится от электродвигателя 4 через редуктор 6. Электродвигатель с редуктором соединен муфтой 5. На выходном валу редуктора установлен шкив колодочного тормоза 7, управляемого электромагнитным или электрогидравлическим приводом и служащего для затормаживания конвейера после свободного выбега. На промежуточном валу 8 смонтирован храповой останов 9, предотвращающий обратный ход ленты конвейера, загруженного и установленного под углом β>6°.

 

16.Натяжная станция ленточного конвейера Натяжная станция предназначена для создания приводом тягового усилия, а также для поддержания заданного провеса ленты между роликоопорами и компенсации остаточной деформации (удлинения) ленты при ее вытяжке. По принципу действия натяжные устройства разделяют на жесткие и автоматические. В жестком натяжном устройстве натяжной барабан периодически изменяет свое положение в процессе работы конвейера, что не обеспечивает постоянного натяжения и постоянной компенсации остаточной деформации ленты.

Автоматическое натяжное устройство обеспечивает постоянное определенное соотношение натяжений в набегающей и сбегающей с привода ветвях ленты при любых на

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...