Оптимизация предприятий по переработке с.-х. продукции в условиях рынка
⇐ ПредыдущаяСтр 2 из 2 С переходом к рыночной экономике в нашей стране те вопросы управления предприятием и планирования его производственной деятельности, которые в допереходном периоде распределялись вышестоящими директивными органами, начинают концентрироваться непосредственно на уровне самого хозяйствующего субъекта. В подобных экономических условиях для предприятий перерабатывающей промышленности разработка и реализация действенной программы управления, в том числе на уровне производственной системы, является необходимым этапом их устойчивого развития. На сегодняшний день данный факт обусловлен целым рядом причин, таких как обострение конкуренции в отрасли, недостаточный технический потенциал, неспособность соответствовать запросам покупателей продукции и т.д. Переход субъектов хозяйственной деятельности на принципы самоуправления требует создания оптимальной структуры производства, так как процесс производства продукции является основой функционирования любого промышленного предприятия. С данным направлением деятельности связано такое понятие, как производственная программа - задание по объему, номенклатуре, ассортименту, количеству, срокам изготовления и стоимости подлежащих выпуску изделий, работ и услуг. Производственная программа влияет на все стороны деятельности предприятия, поэтому рациональное ее планирование является важнейшим аспектом управления. В настоящее время задача создания оптимальной структуры производства предприятия не может быть эффективно решена без изменения методов управления его развитием. Данное утверждение применимо к хозяйствующим субъектам всех отраслей промышленности,
Применение экономико-математических методов и ЭВМ позволяет получить оптимальный план сочетания отраслей агропромышленного предприятия, обеспечивающий наиболее эффективное использование трудовых, материальных и финансовых ресурсов, а также производственных мощностей перерабатывающего предприятия (цеха, завода). Критериями оптимальности в данной задаче могут быть: максимум валовой (товарной) продукции; максимум прибыли (чистого дохода); минимум материально-денежных затрат (при фиксированных объемах производства продукции). В процессе решения определяют значения следующих групп переменных величин: площади многолетних насаждений и сельскохозяйственных культур; поголовье скота и птицы; объем производства продукции перерабатывающего предприятия; потребность в расширении производственных мощностей и емкостей завода; объем производства вторичного сырья и продукции его переработки; стоимостные показатели; оптимальный вариант использования сельскохозяйственного сырья и технологий его переработки и др. Наиболее ответственным моментом в математическом моделировании экономических процессов является правильная постановка экономико-математической задачи, подлежащей решению. Постановка задачи предполагает ее четкую экономическую формулировку, включающую цель решения, установление планового периода, выяснение известных параметров объекта и тех, количественное значение которых нужно определить, их производственно-экономических связей, а также множества факторов и условий, отражающих моделируемый процесс. Цель решения экономико-математической задачи выражается количественно определенным показателем, называемым критерием оптимальности. Он должен соответствовать экономической сущности решаемой задачи. При этом необходим всесторонний и глубокий качественный анализ существа решаемой задачи и точная формулировка цели ее решения, поскольку при изменении критерия оптимальности, как правило, значительно изменяется как сам оптимальный план, так и его характеристики. Выбор критерия оптимальности должен быть грамотным с теоретических позиций, соответствовать народнохозяйственным интересам, удовлетворять потребности практического планирования и отвечать требованиям математического метода решения задачи.
В качестве предпочтительных критериев оптимальности, отвечающих целям развития социалистических сельскохозяйственных предприятий, могут выступать следующие показатели: - максимум прибыли, определяемый как разность между суммой реализованной продукции и ее полной себестоимостью; - максимум чистого дохода, определяемый как разность между стоимостью валовой продукции и суммой всех производственных затрат; - максимум товарной (реализованной) продукции; максимум валовой продукции; минимум производственных затрат; минимум приведенных затрат и др. В наибольшей степени требованию максимального производства продукции при минимуме затрат соответствуют первые два критерия — максимум прибыли и максимум чистого дохода. При решении отдельных экономико-математических задач часто используются наряду со стоимостными и другие разнообразные критерии оптимальности, например минимум затрат пашни, минимум затрат трудовых ресурсов, максимум производства зерна и др. Важным этапом при решении экономико-математических задач является определение перечня переменных и ограничений. В постановке задачи должен содержаться ясный ответ на вопрос, что в ней является неизвестным, иначе говоря, какие переменные величины и их численные значения необходимо найти в результате ее решения. Во-первых, перечень переменных величин всегда должен отражать характер, основное содержание моделируемого экономического процесса. Например, при моделировании рационов кормления в качестве переменных будут выступать виды кормов и кормовых добавок, из которых составляется рацион для конкретного животного. Решив такую задачу на ЭВМ, определяют, какое количество каждого вида — кормов, входящих в перечень переменных, должно быть в оптимальном рационе.
Аналогично при моделировании производственной структуры сельскохозяйственного предприятия в качестве переменных величин будут выступать неизвестные, искомые размеры отраслей, площади сельскохозяйственных культур и кормовых угодий. В результате решения на ЭВМ будут получены их необходимые величины — какое поголовье скота в разрезе видов и половозрастных групп необходимо содержать в данном хозяйстве, сколько гектаров и каких сельскохозяйственных культур посеять и т. д. Точно так же в экономико-математической модели оптимизации состава и структуры машинно-тракторного парка переменными величинами являются количество видов агрегатов и марок тракторов и сельскохозяйственных машин, покупаемых или списываемых в хозяйстве. Во-вторых, помимо характера моделируемого процесса, количество и состав переменных в каждой экономико-математической модели определяется вычислительными возможностями ЭВМ и ее программ, на которой предполагается осуществить решение конкретной задачи. Чем больше мощность ЭВМ, тем большее количество переменных и ограничений можно включить в задачу. В-третьих, количество переменных зависит от выбора планового периода процесса (долгосрочный, среднесрочный, текущий), который оказывает существенное влияние на степень детализации состава переменных. Чем меньше период, на который составляется экономико-математическая модель, тем больше детализация переменных. При планировании на более отдаленную перспективу (пятилетний план, план организационно-хозяйственного устройства) необходимости в столь подробной детализации переменных нет, и поэтому сельскохозяйственные культуры вводятся в разрезе групп, а поголовье животных — в пересчете на структурные или условные головы. В-четвертых, количество переменных зависит также от того, насколько подробно в модели должны быть представлены следующие признаки: вид продукции; - направление использования продукции; - применяемые виды технологии возделывания, степень интенсивности;
- способы, каналы и сроки производства и реализации продукции. По указанным признакам детализуются переменные как по растениеводству, так и по животноводству. Одна и та же сельскохозяйственная культура может быть представлена несколькими переменными, например, многолетние травы на сено, сенаж, силос, зеленый корм, семена; овес на фураж, для реализации государству, для обмена на комбикорм, на семена для посева однолетних трав и т. д. Переменные по животноводству могут быть дифференцированы также и по вариантам кормления, уровню продуктивности, удельному весу маточного поголовья, видам построек, в которых размещен скот. По экономической роли в моделируемом процессе все переменные величины классифицируются на основные и вспомогательные. Основные переменные обозначают сельскохозяйственные культуры, отрасли животноводства, сельскохозяйственную технику, минеральные удобрения, виды кормов, то есть те величины, которые определяют основное содержание моделируемого процесса в каждом конкретном случае. Вспомогательные переменные привлекают специально для облегчения математической формулировки условий, для определения расчетных величин (объемов ресурсов, показателей эффективности производства и т. д.). Для каждой переменной величины устанавливается определенная размерность. Целесообразно иметь одинаковую размерность по однотипным группам переменных. Так, если сельскохозяйственные культуры принято измерять в гектарах посева, то нужно, чтобы ни одна из отраслей растениеводства не имела размерности в центнерах. Размерность в гектарах еще удобна и потому, что в годовых отчетах и производственно-финансовых планах информация, необходимая для построения экономико-математических моделей, чаще всего дана в расчете на 1 га и проводить дополнительные расчеты, как правило, не нужно. После установления перечня переменных величин необходимо определить состав и количество ограничений, отражающих условия задачи. Как уже подчеркивалось в постановке задачи, ограничения должны отражать те экономические и технологические условия, которые действительно ограничивают возможности производства. Следует также помнить, что чем больше ограничений включено в модель, тем сложнее реализовать ее на ЭВМ малой мощности. Все ограничения по их экономическому значению классифицируются на основные, дополнительные и вспомогательные. Основные ограничения отражают главные условия задачи. Они накладываются на все или большинство переменных. К ним относятся ограничения по использованию производственных ресурсов (земли, рабочей силы, машинно-тракторного парка, удобрений, денежно-материальных затрат, кормов и т. д.).
Дополнительные ограничения накладываются на небольшое количество переменных величин или отдельные переменные. Обычно они формулируются в виде неравенств, ограничивающих снизу и сверху потребление, множество, элементами которого являются номера ограничений по соотношениям посевных площадей сельскохозяйственных культур. Отдельные переменные могут быть связаны с объемом ограничений (константами) с помощью коэффициента-связки. Весьма ответственным этапом моделирования является процесс сбора и обработки исходной информации. В зависимости от постановки задачи и объекта, по которому эта задача должна быть построена, определяют характер и объем необходимой информации, источники ее сбора и методы обработки. В качестве источников исходной информации используют годовые отчеты, производственно-финансовые и перспективные планы, планы организационно-хозяйственного устройства, данные первичного учета сельскохозяйственных предприятий, технологические карты по возделыванию и уборке сельскохозяйственных культур и выращиванию животных, а также различные нормативные справочники. Информация как совокупность необходимых для моделирования сведений об экономическом процессе и объекте должна быть полной, достоверной, доступной и своевременной. Эти качества информации являются обязательными при разработке новых экономико-математических моделей, и результаты решения задач могут быть искажены, если исходные данные недостаточно полны и не точны. Исходная информация подвергается переработке в конкретные числа, выражающиеся в определенных единицах измерения. Для любой экономико-математической модели эти числа формируются в технико-экономические коэффициенты, коэффициенты целевой функции и константы или объемы ограничений. После того, когда рассчитаны все технико-экономические коэффициенты, коэффициенты целевой функции и константы (правые части), приступают к построению числовой экономико-математической модели. Она может быть отражена в виде системы линейных соотношений. Для построения экономико-математической модели целесообразно вначале записать все ограничения в виде системы линейных неравенств и уравнений, а затем уже строить числовую модель в виде таблицы.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|