Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Космогоническая гипотеза Леметра, гипотеза Гамова «горячей сингулярности», «большой взрыв» и ранние эпохи образования Вселенной




 

Как уже отмечалось, наша Метагалактика нестационарна, поскольку непрерывно изменяется, в прежние времена (если кому было наблюдать) она выглядела иначе, и не будет находиться в нынешнем виде вечно — она имела начало и должна иметь конец своего, существования (таковы современные представления об эволюции Вселенной).

Около двадцати или десяти миллиардов лет назад (где-то в этом интервале времен) вещество, из которого сегодня состоят галактики, было сконцентрировано до очень больших плотностей в некоторой, так называемой, покоящейся сингулярной точке. В современную эпоху наблюдаемые скорости тогда образовавшихся галактик достигают и сотен, и двух сотен тысяч км/с, т. е. скорости их движения оказываются сравнимыми со скоростью света. Создается впечатление, что когда-то в те давние времена произошел гигантский по мощи взрыв этой сингулярной области (говорят об этом совершенно в условном смысле, а не в прямом толковании взрыва), который и явился началом развития Метагалактики (если угодно, Вселенной) к ее современному состоянию. Такой взгляд на начало мира оказался приемлемым многим ученым, гипотеза эта получила всеобщее признание и была названа гипотезой Большого взрыва (по англ. — Big Bang). В варианте холодной сингулярности она принадлежит французскому космологу аббату Жоржу Лемэтру (1894-1966), ставшему впоследствии президентом Ватиканской академии наук, а в варианте горячей сингулярности — великому русскому ученому Георгию Гамову (1904-1968).

Вопрос о том, в каком состоянии была сингулярность тогда, далеко не праздный. От физического состояния вещества существенно зависит возраст Вселенной. Кроме того, при высоких температурах (миллионах и миллардах градусов) могут протекать термоядерные реакции. Поэтому химический состав «горячей» Вселенной может быть существенно другим, чем «холодной». А от химического состава зависят размеры и светимость звезд, темпы их эволюции. На протяжении нескольких десятилетий обе модели (холодная и горячая) существовали в космологии равноправно. Каждая из них имела свои привлекательные стороны и свои недостатки, своих сторонников и своих критиков. Не хватало лишь подтверждения наблюдениями. Так вот, подтверждения такие последовали, и о них мы будем писать в следующем пункте.

Итак, по современным воззрениям, Вселенная возникла в результате стремительного расширения, если угодно, взрыва, сверхплотного горячего вещества, обладавшего сверхвысокой температурой. Это был не обычный взрыв, который начинается из определенного центра и затем захватывает другие области пространства. По образному выражению нобелевского лауреата, американского физика Стивена Вайнберга (соавтора теории электрослабого взаимодействия), взрыв произошел одновременно везде, «причем каждая частица материи устремилась прочь от любой другой частицы». Другого пространства, кроме того, которое было первоначально занято исходным веществом, не существовало, т. е. тогда это была вся, именно вся Вселенная. И начальный Большой взрыв (Big Bang) был не расширением материи в окружающее пространство, а расширением самого пространства. Big Bang произошел 13-17 млрд лет назад (по оценкам из закона Хаббла).

Проследим за динамикой развития Вселенной после взрыва. Чем дальше мы уходим в прошлое, тем больше температура, все ближе и ближе сингулярность — загадка взрыва Вселенной. Современная наука позволяет в мысленном путешествии во времени подойти к сингулярности вплотную. Вернемся опять к использованию простейших математических формул, которые позволят с большей наглядностью проиллюстрировать это путешествие. Связь температуры Т и времени t, прошедшего от начала расширения такова:

где Т задается в градусах Кельвина, t — в секундах. Начальная температура, по предположению Гамова, была порядка 1032 градусов Кельвина. Это так называемая планковская температура, составленная из планковских единиц длины, времени и массы. Начиная с этого момента (с нуля времени!), Вселенная начала расширяться, температура ее стала понижаться, а объем Вселенной начал расти. Опять же, через планковское время, которое оценивается величиной около 10-43 с, после рождения классического пространства-времени, во Вселенной наступила инфляционная эпоха. Она характеризуется предельно сильным отрицательным давлением (его иногда называют состоянием фальшивого вакуума), при котором меняются законы обычной гравитационной физики. Вещество становится не источником притяжения, а источником отталкивания. Во время этой эпохи объем Вселенной увеличивается на много-много порядков от первоначального объема, вплоть до ста порядков, т. е. практически до размеров почти современной Вселенной, в результате чего вся современная Вселенная оказывается в одной причинно-следственной области, уравнивается кинетическая энергия расширения и ее потенциальная энергия. Из-за действия сил отталкивания Вселенная «разгоняется» и приобретает большую кинетическую энергию, которую в дальнейшем, в последующие эпохи, мы наблюдаем в виде хаббловского расширения по инерции.

Через одну секунду после взрыва температура настолько понизилась, что была уже всего 10 млрд градусов. При такой все еще огромной температуре происходят процессы рождения и аннигиляции (превращения в свет, в фотоны) элементарных частиц. Например, процессы рождения пар электрон-позитрон при столкновении фотонов и обратная реакция, аннигиляция пар электрон-позитрон с превращением в фотоны.

При еще более высокой температуре, следовательно, еще ближе к моменту «взрыва», возможны были рождение и аннигиляция более тяжелых частиц и античастиц, причем непрерывно происходило быстрое их взаимное превращение. В этом первоначальном и «кипящем бульоне» из элементарных частиц, частиц примерно было столько же, сколько фотонов. В настоящее время фотонов в миллиард раз (109) раз больше, чем частиц (протонов). Очевидно, объяснить такое соотношение между числом фотонов и числом частиц в прошлом и настоящем можно, если только предположить, что в «кипящем планковском бульоне», в прошлом, на каждый миллиард античастиц приходился миллиард плюс одна частица, т. е. существовала мизерная ассиметрия между частицами и античастицами. (Если бы ассиметрия была в другую сторону, то нынешняя Вселенная состояла бы из антивещества). Возникает множество вопросов: почему разница между количеством частиц и античастиц так мала? и т. д. Оставим в стороне пока эти вопросы и вернемся к ситуации, возникшей через одну секунду (!) после взрыва. В это время от всего разнообразия частиц остались только фотоны, электроны и позитроны, нейтрино и антинейтрино. Нейтрино и антинейтрино вырвались из равновесного состояния, из «кипящего бульона», примерно через 0,2 сек. после взрыва (в отличие от фотонов, оторвавшихся примерно через миллион лет).

Как уже, наверное, обратили внимание наши читатели, анализ «большого взрыва» свелся к обсуждению проблем, связанных с элементарными частицами. За последние годы в физике элементарных частиц произошли большие изменения. Сейчас логически последовательное описание Big Bang невозможно без элементарных частиц. Стало ясно, и это мы показали раньше, что такие, например, элементарные частицы, как протон и нейтрон, не являются «кирпичиками мироздания», а являются сложными системами, состоящими из более элементарных объектов — кварков. Если условно мы подразделяем наш мир на три состояния по своим, в общем-то отличительным друг от друга, законами (микромир, макромир и мегамир), то в момент «большого взрыва» произошло слияние микро — и мегамира. Такое состояние Вселенной в то ушедшее время получило название микрокосмоса.

Все тяжелые частицы, адроны, состоят из кварков. Соединение кварков осуществляется посредством элементарных переносчиков сильного взаимодействия — глюонов. Но самое поразительное заключается в том, что на взаимодействие элементарных частиц, на сложные процессы, проходящие в «кипящем бульоне», оказывает влияние пустота — физический вакуум. Этот особый вакуум (так считает современная наука) является сложным состоянием, необычной пустотой, от которого зависят свойства пространства-времени и материи. Физический вакуум — зто сложнейшее состояние «кипящих» виртуальных частиц всевозможных сортов (см. пред. главу 5).

Следует также вспомнить о видах взаимодействия, известных нам. Таких видов взаимодействий, как уже указывалось, всего четыре: гравитационное, электромагнитное, слабое и сильное. Переносчиком электромагнитного взаимодействия являются фотоны — кванты электромагнитного поля, не имеющие массы покоя и двигающиеся всегда только с одной скоростью — со скоростью света. Слабое взаимодействие проявляется лишь на очень малых расстояниях — порядка 10-16 см (радиус электромагнитного и гравитационного взаимодействия, по существу, бесконечен). Переносчиками слабого взаимодействия являются бозоны, которых имеется три сорта: W+, W", Z°. При высокой температуре Т > 1015К различие между слабым и электромагнитным взаимодействием пропадает, при этой температуре (можно пересчитать, в какой момент времени после взрыва это происходит) существует единое электрослабое взаимодействие. За разработку единой теории электромагнитного и слабого взаимодействий, т. е. электрослабого взаимодействия, С. Вайнберг, Ш. Глэшоу и А. Салам были в 1979 году удостоены Нобелевской премии.

Частицы, подверженные слабому взаимодействию, как указывалось ранее, называются лептонами. При температурах Г >> 1015К, когда возникает единое электрослабое взаимодействие, существует симметрия между электромагнитным и слабым взаимодействием, а поле, осуществляющее электрослабое взаимодействие, называется полем Хиггса.

Упомянутые выше кварки являются кирпичиками тяжелых частиц — адронов, их существование убедительно экспериментально доказано. Но парадоксальным в данном случае является то, что кварки в свободном состоянии не обнаружены, они просто не могут существовать в свободном состоянии. У кварков есть характеристика, величина, аналогичная электрическому заряду у «обычных» элементарных частиц. Эта величина называется «цветом». Сильное взаимодействие еще иначе называют цветной силой. Так вот, при температурах, значительно более высоких, чем 1015К (этой температуре соответствует энергия 102 Гэв, Гэв — гигаэлектронвольт, гига означает 109), возможно объединение электрослабого и сильного взаимодействия. Это объединение, носящее название Великого, наступает при энергиях 1014 Гэв. Для сравнения можно напомнить, что самые мощные в мире ускорители элементарных частиц разгоняют элементарные частицы до порядка 102 Гэв, таким образом, в обозримом будущем взаимодействие Великого объединения в лабораторных условиях наблюдать невозможно. Такие состояния может создать только сама Природа, в частности, вблизи «большого взрыва» такие состояния возможны. Не исключена возможность такого состояния и в локальных объектах Вселенной, например, в «черных дырах». Это состояние может возникнуть, например, со звездой при гравитационном коллапсе.

Почему мы здесь об этом говорим и пишем? Да потому, что правильность теоретических представлений о взаимодействии Великого объединения можно проверить по исследованиям и анализу процессов в сегодняшней Вселенной, ведь в сегодняшней Вселенной должны существовать следы тех грандиозных событий, которые происходили вблизи «большого взрыва». Кстати, если подсчитать момент времени t, соответствующий температуре Т, когда энергия 1014 Гэв (тогда Т=1027 К), то получится t =10-24с.

На наших глазах происходит осуществление научной мечты Эйнштейна — мечты об объединении всех сил природы. Итак, при температурах Т=1027К происходит объединение трех сил: электромагнитной, слабой и сильной. Остается в стороне только одна сила — гравитационная. Казалось бы, осталось сделать только один шаг, но этот последний шаг до сих пор не удается сделать пока никому.

Напомним, что специальная теория относительности объединила пространство и время. Общая теория относительности, являющаяся современной теорией гравитации, исходит из того, что гравитация — это проявление искривления четырехмерного пространства- времени. Массивные тела искривляют пространство-время, и эти тела движутся «свободно» в искривленном пространстве-времени по геодезическим линиям. Эйнштейн по существу показал следующее: природа гравитационного поля по существу геометрическая — это кривизна пространства- времени. Эйнштейн был убежден, что и электромагнитное поле должно иметь геометрическую природу. До самой смерти (он умер в 1955 году) Эйнштейн работал над теорией, объединяющей гравитацию и электромагнетизм. Сейчас, когда мы знаем о наличии еще слабого и сильного взаимодействия, мы понимаем тщетность усилий Эйнштейна.

Теперь мы снова обращаемся к идее объединения всех сил с гравитацией. Оценка энергии, при которой должно произойти объединение всех сил природы, равна 1019Гэв, что соответствует температуре Т=1032К, т. е. начальной температуре в сингулярности. В результате этого суперобъединения нет отдельных четырех взаимодействий, есть только одно универсальное супервзаимодействие. При разработке теорий, в которых существует единое универсальное взаимодействие, ученые с неизбежностью приходят к рассмотрению абстрактных пространств с большим, чем четыре, числом измерений. Есть варианты теорий, в которых рассматриваются 10, 11 и даже 26 измерений вместо обычных четырех. Почему же мы на практике не обнаруживаем этих дополнительных измерений? Как утверждают ученые, все дополнительные измерения компактно «сворачиваются» на расстояниях порядка 10-23см — это так называемая планковская длина волны. На этих расстояниях необходимо учитывать квантовые эффекты -здесь уже не «работает» классическая общая теория относительности. Квантовой же теории гравитации в признанном всеми варианте пока еще не существует.

Вернемся к нашему путешествию во времени к точке «большого взрыва». Мы говорили о том, что в нашей Вселенной должны сохраниться «следы» тех процессов, которые протекали вблизи сингулярного состояния. К таким «следам» относятся самые фундаментальные свойства нашего мира, а именно, тот факт, что пространство имеет три измерения, а время — одно измерение, тоже обусловлено теми, далекими для нас, процессами. Тот факт, что во Вселенной есть вещество, также обусловлен теми процессами. Вообще Вселенная вблизи «большого взрыва» напоминает суперген (если использовать биологическую терминологию), в котором заложена вся информация о будущем Вселенной. Недаром католической церкви понравился Big Bang.

Однако продолжим анализ начала и последующих моментов после взрыва. Прошло три-пять минут после начала расширения, и температура во Вселенной упала ниже одного миллиарда градусов. При этой температуре возможно соединение протона и нейтрона в ядро дейтерия. В результате реакций синтеза при температуре ниже миллиарда градусов начинают возникать ядра гелия. На этом ядерные реакции в ранней Вселенной прекращаются. Расчеты показывают, что в первичном веществе должно образоваться около 25% гелия по массе, а остальное вещество (75%) — это ядра атомов водорода (протоны). Наблюдения показывают, что первые звезды во Вселенной образовались из вещества, химический состав которого соответствует предсказаниям теории горячей Вселенной. Все другие химические элементы образовались при дальнейшей эволюции Вселенной главным образом в недрах звезд, а за образование тяжелых элементов ответственны в первую очередь процессы в сверхновых звездах. (Таким образом, атомы, которые есть в нашем организме, когда-то были рождены в недрах какой-то сверхновой звезды!).

После рекомбинации атомов вещество, заполняющее Вселенную, представляло собой газ, который вследствие гравитационной неустойчивости стал собираться в сгущения. Результаты этого процесса мы видим в виде скоплений галактик, галактик и звезд. Структура Вселенной весьма непроста, и изучение механизма ее образования — это одна из самых интересных задач настоящего времени. Как ни странно, она далека от решения — мы более ясно представляем себе, что происходило в первые секунды после «большого взрыва», чем в период от миллиона лет до нашего времени.

Есть много загадок в космологии, которые человечество еще не разгадало. Например, почему наша Вселенная является однородной? (Конечно, в больших масштабах). Почему средняя плотность вещества во Вселенной очень близка к критической плотности? И самая главная загадка: что могло быть причиной начала расширения?

Русские физики А. Д. Линде и А. А. Старобинский показали, что состояние с огромным отрицательным давлением, как у вакуума, во Вселенной могло возникнуть в результате квантовых эффектов в гравитационном поле. Это огромное отрицательное давление могло возникнуть при температуре «кипящего бульона», равной Т=1032К, т. е. при этой температуре происходит суперобразование (взаимодействие Великого объединения и гравитационное взаимодействие сливаются в одно взаимодействие). Соответствующий момент времени tn=3 х 10-44с, плотность материи в этот момент r=1094г/см3. Возможно, что возникновение состояния с огромным отрицательным давлением в этот момент и послужило первотолчком к расширению Вселенной.

Сейчас ясно одно: чем ближе к «началу», тем более экзотичней становятся законы природы, тем больше возникает вопросов. В заключение приведем таблицу эпох расширения Вселенной с указанием только ключевых процессов.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...