Дополнительный член в формуле прямоугольников.
Содержание.
1. Введение. Постановка задачи……..…………………………2стр. 2. Вывод формулы……………………………………………….3стр. 3. Дополнительный член в формуле прямоугольников……….5стр. 4. Примеры………………………………………………………..7стр. 5. Заключение……………………………………………………..9стр. 6. Список литературы…………………………………………...10стр.
Постановка задачи.
Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами, сами подынтегральные функции не являются элементарными. Распространенными являются также случаи, когда подынтегральная функция задается графиком или таблицей экспериментально полученных значений. В таких ситуациях используют различные методы численногоинтегрирования, которые основаны на том, что интеграл представляется в виде предела интегральной суммы (суммы площадей), и позволяют определить эту сумму с приемлемой точностью. Пусть требуется вычислить интеграл при условии, что a и b конечны и f(x) является непрерывной функцией на всем интервале (a, b). Значение интеграла I представляет собой площадь, ограниченную кривой f(x),осью x и прямыми x= a, x= b. Вычисление I проводится путем разбиения интервала от a до b на множество меньших интервалов, приближенным нахождением площади каждой полоски, получающейся при таком разбиении, и дальнейшем суммировании площадей этих полосок.
Вывод формулы прямоугольников.
Прежде, чем перейти к формуле прямоугольников, сделаем следующее замечание: З а м е ч а н и е. Пусть функция f (x) непрерывна на сегменте [ a, b ], а - некоторые точки сегмента [ a, b ]. Тогда на этом сегменте найдётся точка такая, что среднее арифметическое . В самом деле, обозначим через m и M точные грани функции f (x) на сегменте [ a, b ]. Тогда для любого номера k справедливы неравенства . Просуммировав эти неравенства по всем номерам и поделив результат на n, получим Так как непрерывная функция принимает любое промежуточное значение, заключённое между m и M, то на сегменте [a, b] найдётся точка такая, что .
Первые формулы для приближенного вычисления определённых интегралов проще всего получаются из геометрических соображений. Истолковывая определенный интеграл как площадь некоторой фигуры, ограниченной кривой , мы и ставим перед собой задачу об определении этой площади.
Прежде всего, вторично используя эту мысль, которая привела к самому понятию об определенном интеграле, можно разбить всю фигуру (рис. 1) на полоски, скажем, одной и той же ширины , а затем каждую полоску приближенно заменить прямоугольником, за высоту которого принята какая-либо из ее ординат. Это приводит нас к формуле (1) где , а R – дополнительный член. Здесь искомая площадь криволинейной фигуры заменяется площадью некоторой состоящей из прямоугольников ступенчатой фигуры (или – если угодно – определенный интеграл заменяется интегральной суммой). Эта формула и называется формулой прямоугольников.
(рис.1) На практике обычно берут ; если соответствующую среднюю ординату обозначить через , то формула перепишется в виде .
Дополнительный член в формуле прямоугольников. Перейдём к отысканию дополнительного члена в формуле прямоугольников. Справедливо следующее утверждение: У т в е р ж д е н и е. Если функция f (x) имеет на сегменте [ a, b ] непрерывную вторую производную, то на этом сегменте найдётся такая точка , что дополнительный член R в формуле (1) равен (2) Доказательство. Оценим , считая, что функция f(x) имеет на сегменте [- h, h ] непрерывную вторую производную Для этого подвергнем двукратному интегрированию по частям каждый из следующих двух интегралов:
Для первого из этих интегралов получим Для второго из интегралов аналогично получим Полусумма полученных для и выражений приводит к следующей формуле:
(3) Оценим величину , применяя к интегралам и формулу среднего значения и учитывая неотрицательность функций и . Мы получим, что найдутся точка на сегменте [- h, 0] и точка на сегменте [0, h ] такие, что В силу доказанного замечания на сегменте [-h, h] найдётся точка такая, что Поэтому для полусуммы мы получим следующее выражение:
Подставляя это выражение в равенство (3), получим, что (4) где . (5) Так как величина представляет собой площадь некоторого прямоугольника с основанием (рис.1), то формулы (4) и (5) доказывают, что ошибка, совершаемая при замене указанной площадью, имеет порядок Таким образом, формула тем точнее, чем меньше h. Поэтому для вычисления интеграла естественно представить это интеграл в виде суммы достаточно большого числа n интегралов И к каждому из указанных интегралов применить формулу (4). Учитывая при этом, что длина сегмента равна , мы получим формулу прямоугольников (1), в которой Здесь . Мы воспользовались формулой, доказанной в утверждении, для функции
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|