Развитие геотермальной энергетики в России
⇐ ПредыдущаяСтр 3 из 3
Сегодня ГеоТЭС в мире производят около 54613 ГВт∙ч энергии в год. Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 75900 ГВт⋅ч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива. Практически на всей территории страны есть запасы геотермального тепла с температурами в диапазоне от 30 до 200 °С. На сегодняшний день уже пробурено около 4000 скважин на глубину до 5000 м, позволяющих перейти к широкомасштабному внедрению современных технологий для локального теплоснабжения на всей территории страны. Потенциальные тепловые ресурсы верхних слоев Земли, до глубины 100-200 м оцениваются в 400-1000 млн. тонн условного топлива в год. По данным института вулканологии Дальневосточного Отделения Российской Академии наук, только геотермальные ресурсы Камчатки оцениваются в 5000 МВт, что позволит обеспечивать регион электроэнергией и теплом в течение 100 лет. Поэтому особое внимание уделяется развитию геотермальной энергетики в данном регионе. Уже разработана и реализовывается программа создания геотермального энергоснабжения Камчатки, в результате которой ежегодно будет сэкономлено около 900 т. у. т. Согласно прогнозам Research Techart, доля геотермальной энергетики в России к 2020 году может достигнуть 0,3% в совокупном энергобалансе. Установленная мощность составит 750 МВт и посредством термальных ресурсов земли может вырабатываться до 5 млрд. кВт∙ч электроэнергии. Наибольший прирост установленных мощностей ожидается в период с 2015 по 2020. Прогнозная динамика ввода геотермальных мощностей представлена на рисунке 4. Развитию отрасли будет также способствовать увеличение объема инвестиций. Так, до 2020 года в строительство новых геотермальных объектов будет вложено около 60 млрд. рублей. (Рисунок 5)
Мощность, МВт Временной промежуток Рисунок 4 - Прогнозируемая динамика ввода новых мощностей, МВт. Млрд. руб.
Временной промежуток Рисунок 5 - Оценка капиталовложений в создание объектов геотермальной энергетики, млрд. руб.
Вместе с тем, рассматривая текущее и перспективное производство электроэнергии на основе возобновляемых источников, следует отметить, что геотермальная энергия к началу века от общего количества вырабатываемой электроэнергии не превосходила 0,15 % и лишь к 2010 г. хотя и увеличится на треть, но не превысит 0,2 % с общей выработкой на уровне 7 ТВт∙ч. В соответствии с Энергетической стратегией России до 2020 года планируется рост теплопотребления в стране не менее чем в 1,3 раза, причем доля децентрализованного теплоснабжения будет возрастать с 28,6% в 2000 г. до 33% в 2020 г. Однако до недавнего времени, масштаб использования геотермальной энергии в стране был весьма скромным. Особенно актуальным представляется использование геотермальной энергии в отдаленных регионах России, в частности, на Камчатке. На Камчатке, на Паратунском месторождении в 1967 году была создана опытно-промышленная геотермальная электростанция мощностью около 500 кВт - это был первый опыт получения электроэнергии с помощью геотермального тепла в России. Тогда же началась первая в России промышленная выработка электроэнергии на Паужетской геотермальной электростанции. Последняя до сих пор работает и дает самую дешевую на Камчатке электроэнергию. Когда в условиях рыночной экономики резко начала расти цена на мазут, выяснилось, что самой дорогой электроэнергией в России стала камчатская, целиком и полностью зависящая от так называемого северного завоза. Были времена, когда 1 кВт∙ч стоил почти 30 центов. Для сравнения: мировая цена - 6 центов, в России - 1,5-3. В 1994 г. организовался ОАО "Геотерм" и АО "Геотерм-М", и с этого момента началась реализация проекта. Развитие геотермальной энергетики на Камчатке в настоящее время идет не столь активно, как этого требует экономика и экологическая обстановка в регионе. Причин несколько: отсутствие в стратегии развития энергетики региона акцента на геотермию, значительные долги АО "Камчатскэнерго" за многолетние поставки мазута.
По данным АО "Геотерм - М", геотермальные ресурсы России распределены следующим образом: все три российские геотермальные электростанции расположены на территории Камчатки, суммарный энергопотенциал пароводяных терм которой оценивается в 1 ГВт рабочей электрической мощности, однако реализован только в размере 76,5 МВт установленной мощности (2004 год) и около 420 млн. кВт/час годовой выработки (2004 год). Электростанция Мутновская, самая большая в регионе, находится в 120 километрах от города Петропавловск-Камчатский на высоте 1 км над уровнем моря, у подножья одноименного вулкана. Мутновское месторождение состоит из Верхне-Мутоновской ГеоТЭС, установленной мощностью 12 МВт (2007) и выработкой 52,9 млн. кВт·ч/год (2007) (81,4 в 2004) и Мутоновской ГеоТЭС мощностью 50 МВт (2007) и выработкой 360,7 млн. кВт·ч/год (2007) (276,8 в 2004 г.) По данным Международного энергетического агентства (IEA) цена строительства этих установок составила 150 миллионов долларов. Для финансирования проекта РАО ЕЭС было получено от Европейского Банка реконструкции и развития кредит в 100 миллионов долларов. По прогнозам специалистов, производственные мощности Мутновской ГеоТЭС в ближайшие годы вырастут до 250 МВт. Паужетское месторождение находится возле вулканов Кошелева и Камбального - Паужетская ГеоТЭС мощностью 14,5 МВт·э (2004) и выработкой 59,5 млн. кВт∙ч. На Паужетской ГеоТЭС мощностью 11 МВт используется на паровых турбинах только отсепарированный геотермальный пар из пароводяной смеси, получаемой из геотермальных скважин. Большое количество геотермальной воды (около 80% общего расхода ПВС) с температурой 120°C сбрасывается в нерестовую реку Озерная, что приводит не только к потерям теплового потенциала геотермального теплоносителя, но и существенно ухудшает экологическое состояние реки. Предлагается использовать тепло сбросной геотермальной воды для выработки электроэнергии путем создания двухконтурной энергоустановки на низкокипящем рабочем теле. Расход сбросной воды на действующей Паужетской ГеоТЭС достаточен для энергоустановки мощностью 2 МВт. Температура сбросной воды снижается до 55°C, тем самым значительно уменьшается тепловое загрязнение реки.
В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт. Существует проект Океанской ГеоТЭС мощностью 34,5 МВт годовой выработкой 107 млн. кВт·ч. В настоящее время электроснабжение г. Курильска и поселков Рейдово и Горячие Ключи осуществляется с помощью ДЭС, а теплоснабжение - с помощью угольных котельных. Дизтопливо ввозится в короткий период навигации - на о. Итуруп нет своего топлива. В последние годы из-за финансовых трудностей завоз топлива на остров резко сократился; электроэнергия подается населению по 2-3 часа в сутки. Вместе с тем на острове имеются богатейшие по масштабам острова запасы высокопотенциальных геотермальных источников энергии, которые к тому же в основном уже разведаны. На гидрогеологическую разведку и НИОКР по созданию ГеоТЭС израсходовано около 75-80 млрд. руб. в текущих ценах. Стоимость электроэнергии на ГеоТЭС в два с лишним раза ниже, чем на ДЭС. Привозное топливо будет вытеснено из расчета 2,5-3 тыс. т. у. т. /год/МВт. Улучшится экологическая обстановка на острове. На Кунашире действует ГеоТЭС 2,6 МВт, а планируют несколько ГеоТЭС суммарной мощностью 12-17 МВт. В Калининградской области планируется осуществить пилотный проект геотермального тепло - и электроснабжения города Светлый на базе бинарной ГеоТЭС мощностью 4 МВт. В настоящее время геотермальные источники энергии обеспечивают на Камчатке до 25 процентов от общего энергопотребления, что значительно помогает ослабить зависимость полуострова от дорогостоящего привозного мазута. Крупнейшие месторождения парогидротерм Камчатки расположены в горных местностях с неблагоприятным климатом. Среднегодовая температура отрицательная, глубина снега до 10 м. Это существенно затрудняет и удорожает строительство и эксплуатацию геотермальных электростанций.
Сотрудниками ЭНИН, АО "Наука" и НУЦ МЭИ предложен проект ГеоТЭС позволяющий, как минимум, в полтора раза увеличить их полезную мощность и повысить надежность. Как известно, поступающая из геотермальных скважин пароводяная смесь имеет сложный химический состав. Содержание солей в водяной фазе до 2 г/л, в том числе много кремнекислоты, в паре значительное количество неконденсирующихся газов, включая сероводород. Это ограничивает возможность глубокого использования теплового потенциала геотермального теплоносителя в традиционном цикле ГеоТЭС с конденсационными паровыми турбинами, не позволяя получать дополнительный пар расширением воды и глубокий вакуум в конденсаторе. Сильный ветер, мороз, обильные снегопады в сочетании с высокой влажностью создают угрозу образования льда в обычно применяемых на ГеоТЭС влажных градирнях, что может привести к остановке энергоблоков и даже к разрушению градирен. На предлагаемых ГеоТЭС комбинированного цикла эти проблемы в значительной степени решаются. Если применить паровые турбины с близким к атмосферному противодавлением и направить отработанный пар в конденсатор, являющийся одновременно парогенератором нижнего контура станции с турбинами на низкокипящем незамерзающем рабочем теле, то суммарную выработку электроэнергии можно значительно повысить за счет снижения температуры отвода тепла из цикла. Конденсация пара низкокипящего рабочего тела осуществляется в воздушном конденсаторе, поэтому полезная мощность станции зимой значительно возрастает вместе с ростом потребности в электроэнергии. Кроме того, нет затрат пара на эжекторы для удаления неконденсирующихся газов, можно также частично использовать тепло геотермальной воды для перегрева пара низкокипящего рабочего тела. Облегчается зимняя эксплуатация станции, так как нет открытого контакта воды с воздухом, а температура воды в теплообменных аппаратах и трубопроводах не опускается ниже 60°С. Комбинированные ГеоТЭС уже работают за рубежом, но в районах с тропическим климатом, где их эффективность не может проявиться в полную силу из-за высоких температур воздуха. Для северных районов вышеуказанные преимущества таких станций обеспечивают большие перспективы их применения. В проходящем сейчас международном тендере на строительство первой очереди Мутновской ГеоТЭС станция комбинированного цикла рассматривается в качестве одного из возможных вариантов.
К сожалению, в России отсутствует отечественное серийное оборудование энергоустановок на низкокипящем рабочем теле, поэтому реальными поставщиками могут быть лишь иностранные фирмы. Это приводит к росту необходимых капвложений в строительство и эксплуатационных затрат. Чтобы ускорить создание комбинированных ГеоТЭС на Камчатке и стимулировать работу отечественных производителей оборудования, АО "Геотерм" предполагает в ближайшее время построить четвертый блок Верхне-Мутновской ГеоТЭС по комбинированной тепловой схеме. Развитие геотермальной энергетики в России поможет во многом разрешить проблему электрификации малообжитых территорий и повышения надёжности электроснабжения той части потребителей, для которых централизованное энергообеспечение экономически неприемлемо. Без использования возобновляемых источников нельзя удовлетворительно решить энергоснабжение районов Крайнего Севера; районов, не связанных сетями общего пользования; повысить до цивилизованного уровня надёжность и качество электроснабжения регионов, дефицитных по электрической энергии и органическим ресурсам; улучшить экологическую обстановку по стране, обеспечения аварийного энергоснабжения, специальных объектов, а также объектов сферы образования, культуры, услуг. Заключение
Тепло Земли очень "рассеянно", и в большинстве районов мира человеком может использоваться с выгодой только очень небольшая часть такой энергии. Из них пригодные для использования геотермальные ресурсы составляют всего 1% общей теплоемкости верхней 10-километровой толщи земной коры, или 137 трлн. тонн условного топлива. Но и это количество геотермальной энергии может обеспечить нужды человечества на долгое время. Области повышенной сейсмической активности, вокруг краев континентальных плит являются наилучшими местами для строительства геотермальных электростанций, потому что кора в таких зонах намного тоньше. Именно поэтому наиболее перспективные геотермальные ресурсы находятся в зонах вулканической активности. В структуре мирового производства электроэнергии, возобновляемые источники энергии в 2000 году обеспечили 19 % общемирового производства электроэнергии. При этом, несмотря на значительные темпы развития, геотермальная, солнечная и ветровая энергия составляла в 2000 году менее 3 % от общего объема использования энергии, получаемой от возобновляемых источников. Однако в настоящее время геотермальная электроэнергетика развивается ускоренными темпами, не в последнюю очередь из-за галопирующего увеличения стоимости нефти и газа. Этому развитию во многом способствуют принятые во многих странах мира правительственные программы, поддерживающие это направление развития геотермальной энергетики. Отметим, что геотермальные ресурсы разведаны в 80 странах мира и в 58 из них активно используются. Крупнейшим производителем геотермальной электроэнергии являются США, где геотермальная электроэнергетика, как один из альтернативных источников энергии, имеет особую правительственную поддержку. Опыт, накопленный различными странами (в том числе и Россией), относится в основном к использованию природного пара и термальных вод, которые остаются пока наиболее реальной базой геотермальной энергетики. Однако ее крупномасштабное развитие в будущем возможно лишь при освоении петрогеотермальных ресурсов, т.е. тепловой энергии горячих горных пород, температура которых на глубине 3 - 5 км обычно превышает 100°С. Геотермальная энергетика, и геотермальные электростанции в том числе, является одним из самых перспективных видов получения альтернативных источников энергии. Современная востребованность геотермальной энергии как одного из видов возобновляемой энергии обусловлена, прежде всего, истощением запасов органического топлива и зависимостью большинства развитых стран от его импорта (в основном импорта нефти и газа), а также с существенным отрицательным влиянием традиционной энергетики на окружающую среду. Сегодня ГеоТЭС в мире производят около 54613 ГВт∙ч энергии в год. Суммарная мощность существующих геотермальных систем теплоснабжения оценивается в 75900 ГВт⋅ч. Россия, к сожалению, не входит даже в первую десятку производителей электрической и тепловой энергии из геотермальных источников, в то время как запасы геотермальной энергии по оценкам в 10-15 раз превышают запасы органического топлива. Сейчас, в связи с внедрением новых, менее затратных, технологий бурения скважин, применением эффективных способов очистки воды от токсичных соединений и металлов капитальные затраты на отбор тепла от геотермальных вод непрерывно снижаются. К тому же, следует иметь ввиду, что геотермальная энергетика в последнее время существенно продвинулась в своем развитии. Так, последние разработки показали возможность выработки электроэнергии при температуре пароводяной смеси ниже 80 ºС, что позволяет гораздо шире применять ГеоТЭС для выработки электроэнергии. В связи с этим ожидается, что в странах со значительным геотермальным потенциалом и первую очередь в США мощность ГеоТЭС в самое ближайшее время удвоится. Библиографический список
1. Попов, М.С. Геотермальная энергетика в России [Текст] / М.С. Попов - М.: "Энергоатомиздат", 1988. - 294 с. . Максимов, И.Г. Альтернативные источники энергии [Текст] / И.Г. Максимов - М.: "Эко-Тренд", 2005. - 387 с. . Феофанов, Ю.А. Геотермальные электростанции [Текст] / Ю.А. Феофанов - М.: "Эко-Тренд", 2005. - 217 с. . Алхасов, А.Б. Геотермальная энергетика: проблемы, ресурсы, технологии [Текст] / А.Б. Алхасов - М.: "Физматлит", 2008. - 376 с.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|