Интегральная теорема Лапласа.
Бернулли,Муавр-Лаплас,Пуассон 1)Определение. Схемой Бернулли называется последовательность независимых в совокупности испытаний, в каждом из которых возможны лишь два исхода — «успех» и «неудача», при этом успех в одном испытании происходит с вероятностью , а неудача — с вероятностью . Под независимостью в совокупности испытаний понимается независимость в совокупности любых событий, относящихся к разным испытаниям. В испытаниях схемы Бернулли, когда с одним испытанием можно связать только два взаимоисключающих события, независимость в совокупности испытаний означает, что при любом независимы в совокупности события успех в первом испытании успех в -ом испытании . Эти события принадлежат одному и тому же пространству элементарных исходов, полученному декартовым произведением бесконечного числа двухэлементных множеств : Здесь буквами «у» и «н» обозначены успешный и неудачный результаты испытаний соответственно. Обозначим через число успехов, случившихся в испытаниях схемы Бернулли. Эта величина может принимать целые значения от нуля до в зависимости от результата испытаний. Например, если все испытаний завершились неудачей, то величина равна нулю. Теорема (формула Бернулли). Для любого имеет место равенство: Доказательство. Событие означает, что в испытаниях схемы Бернулли произошло ровно успехов. Рассмотрим один из благоприятствующих событию элементарных исходов: когда первые испытаний завершились успехом, остальные неудачей. Поскольку испытания независимы, вероятность такого элементарного исхода равна . Другие благоприятствующие событию элементарные исходы отличаются лишь расположением успехов на местах. Есть ровно способов расположить успехов на местах. Поэтому событие состоит из элементарных исходов, вероятность каждого из которых также равна .
QED Определение. Набор чисел называется биномиальным распределением вероятностей.
2) Пусть в каждом из независимых испытаний событие A может произойти с вероятностью , (условия схемы Бернулли). Обозначим как и раньше, через вероятность ровно появлений события А в испытаниях. кроме того, пусть – вероятность того, что число появлений события А находится между и . Локальная теорема Лапласа. Если n – велико, а р – отлично от 0 и 1, то где - функция Гаусса (функция табулирована, таблицу можно скачать на странице формул по теории вероятностей). Интегральная теорема Лапласа. Если n – велико, а р – отлично от 0 и 1, то P(n; k1, k2) где - функция Лапласа (функция табулирована, таблицу можно скачать на странице формул по теории вероятностей). Функции Гаусса и Лапласа обладают свойствами, которые необходимо знать при использовании таблиц значений этих функций: а) б) при больших верно . Теоремы Лапласа дают удовлетворительное приближение при . Причем чем ближе значения к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность (по сравнению с исходной формулой Бернулли). 3) При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно, например, вычислить трудно. В этом случае для вычисления вероятности того, что в n испытаниях (n – велико) событие произойдет k раз, используют формулу Пуассона: – среднее число появлений события в n испытаниях. Эта формула дает удовлетворительное приближение для и . При больших рекомендуется применять формулы Лапласа (Муавра-Лапласа). Cобытия, для которых применима формула Пуассона, называют редкими, так как вероятность их осуществления очень мала (обычно порядка 0,001-0,0001).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|