Аксиоматическое определение
⇐ ПредыдущаяСтр 2 из 2 В современном математическом подходе вероятность задаётся аксиоматикой Колмогорова. Предполагается, что задано некоторое пространство элементарных событий X. Подмножества этого пространства интерпретируются как случайные события. Объединение (сумма) некоторых подмножеств (событий) интерпретируется как событие, заключающееся в наступлении хотя бы одного из этих событий. Пересечение (произведение) подмножеств (событий) интерпретируется как событие, заключающееся в наступлении всех этих событий. Непересекающиеся множества интерпретируются как несовместные события (их совместное наступление невозможно). Соответственно, пустое множество означает невозможное событие. Вероятностью (вероятностной мерой) называется мера (числовая функция) P, заданная на множестве событий, обладающая следующими свойствами: Неотрицательность: , Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий, то есть формально если при , то . Конечность (ограниченность единицей): В случае если пространство элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счетного или несчетного) пространства элементарных событий этого условия оказывается недостаточно. Требуется так называемая счетная или сигма- аддитивность, то есть выполнение свойства аддитивности для любого не более чем счетного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.
Вероятностная мера может быть определена не для всех подмножеств множества. Предполагается, что она определена на некоторой сигма-алгебре Ω подмножеств [6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность (X,Ω,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным пространством.
Примечания 1. В. С. Соловьёв Вероятность // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907. 2. Так, например, в юриспруденции, когда подлежащий суду факт устанавливается на основании свидетельских показаний, он всегда остаётся, строго говоря, лишь вероятным, и необходимо знать, насколько эта вероятность значительна. В римском праве здесь принималось четверное деление: probatio plena (где вероятность практически переходит в достоверность), далее — probatio minus plena, затем — probatio semiplena major и, наконец, probatio semiplena minor. Необходимо отметить что в римском языке слово вероятность этимологически родственно слову честность. 3. Вообще говоря, существует ненулевая (но пренебрежимо малая) вероятность того, что монетка, например, встанет «ребром», поэтому истинная вероятность выпадения решки или орла несколько меньше 50 % 4. Перейти к: 1 2 Гнеденко Б. В. Курс теории вероятностей: Учебник — Изд. 6-е, перераб. и доп. — М.: Наука. Гл. ред. физ. мат. лит., 1988 — 448с.- с.386-387 5. Abrams, William, «A Brief History of Probability», Second Moment. Проверено 23 мая 2008. 6. Точнее предполагается, что мера определена как минимум на некотором полукольце подмножеств и далее доказывается, что она в таком случае определена и на минимальном кольце, содержащем это полукольцо и более того, эту меру можно продолжить на сигма-алгебру подмножеств Литература: Альфред Реньи. Письма о вероятности / пер. с венг. Д.Сааса и А.Крамли под ред. Б. В. Гнеденко. М.: Мир. 1970
Гнеденко Б. В. Курс теории вероятностей. М., 2007. 42 с. Купцов В. И. Детерминизм и вероятность. М., 1976. 256 с.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|