Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Технологии распределенной обработки данных.




Одной из важнейших сетевых технологий в экономических информационных сис­темах является распределенная обработка данных. То, что персональные компьютеры стоят на рабочих местах, то есть на местах возникновения и использования информации, дало возможность распределить их ресурсы по отдельным функциональным сферам дея­тельности и изменить технологию обработки данных в направлении децентрализации. Распределенная обработка данных позволяет повысить эффективность удовлетворения изменяющейся информационной потребности информационного работника и, тем самым, обеспечить гибкость принимаемых им решений. Преимущества распределенной обработ­ки данных выражаются в:

 

• увеличении числа удаленных взаимодействующих пользователей, выполняющих

функции сбора, обработки, хранения, передачи информации;

 

• снятии пиковых нагрузок с централизованной базы путем распределения обра­ботки и хранения локальных баз данных на разных ЭВМ;.

 

• обеспечении доступа информационному работнику к вычислительным ресурсам сети ЭВМ;

 

• обеспечении обмена данными между удаленными пользователями.

 

Формализация концептуальной схемы данных повлекла за собой возможность классификации моделей представления данных на иерархические, сетевые и реляционные. Это отразилось в понятии архитектуры систем управления базами данных (СУБД) и тех­нологии обработки. Для обработки данных, размещенных на удаленных компьютерах, разработаны сетевые СУБД, а сама база данных называется распределенной.

 

Распределенная обработка и распределенная база денных не являются синони­мами. Если при распределенной обработке производится работа с базой, то подразумева­ется, что представление данных, содержательная обработка данных базы выполняются на компьютере клиента, а поддержание базы в актуальном состоянии – на файл-сервере. Рас­пределенная база данных может размещаться на нескольких серверах и для доступа к уда- ленным данным надо использовать сетевую СУБД? Если сетевая СУБД не используется, то реализуется распределенная обработка данных.

 

При распределенной обработке клиент может послать запрос к собственной ло­кальной базе или удаленной. Удаленный запрос – это единичный запрос к одному серверу. Несколько удаленных запросов к одному серверу объединяются в удаленную тран­закцию. Если отдельные запросы транзакции обрабатываются различными серверами, то транзакция называется распределенной. При этом запрос транзакции обрабатывается одним сервером. Если запрос транзакции обрабатывается несколькими серверами, он на­зывается распределенным.

 

Только обработка распределенного запроса поддерживает концепцию распреде­ленной базы данных.

 

Существуют разные технологии распределенной обработки данных.

 

Одной из первых технологий распределенной обработки данных была технология файл-сервер. По запросу клиента файл-сервер пересылает запрошенный файл. Целостность и безопасность данных не обеспечивается в должной степени. Файл-сервер содержит базу данных и файловую систему для обеспечения многопользовательских запросов.

 

Сетевые СУБД, основанные на технологии файл-сервер, также не обеспечивают безопасность и целостность данных. При увеличении числа запросов падает производи­тельность системы, так как файл-серверы реализуют принцип «все или ничего». Полные копии файлов базы перемещаются по сети, увеличивается трафик сети, что может привести к увеличению времени ожидания клиентов. Трафик сети – это поток сообщений в сети.

 

На смену была разработана технология клиент-сервер. Технология клиент-сервер является более мощной, так как позволила совместить достоинства однопользовательских систем (высокий уровень диалоговой поддержки, дружественный интерфейс, низкая цена) с достоинствами более крупных компьютерных систем (поддержка целостности, защита данных, многозадачность).

 

Файл-сервер заменен сервером баз данных, который содержит базу данных, сетевую операционную систему, сетевую СУБД. Сервер баз данных обрабатывает за­просы клиентов, выбирает необходимые данные из базы, посылает их клиентам по се­ти, производит обновление информации, обеспечивает целостность и безопасность данных.

 

Технология клиент-сервер позволяет независимо наращивать мощности сервера баз данных, увеличивая число поддерживаемых им услуг, и клиента, использующего но­вые приложения.

 

Для доступа к серверу баз данных и манипулирования данными применяется язык запросов SQL. По запросу клиента отправляется не полная копия файла, а логически не­ обходимая порция данных. Тем самым уменьшается трафик сети, что позволяет увеличить число обслуживаемых пользователей.

 

К недостаткам технологии клиент-сервер можно отнести то, что при отсутствии се­тевой СУБД трудно организовать распределенную обработку.

 

Платформу сервера баз данных определяют операционная система компьютера клиен­та и сетевая операционная система. Под платформой понимают тип процессора, операционной системы, добавочного оборудования и поддерживающих его программных средств, на которых можно установить новое приложение. Сетевые операционные системы серверов баз данных – Unix, Windows NT, Linux и др. В настоящее время наиболее популярными сервера­ми баз данных являются Microsoft SQL-server, SQLbase-server, Oracle-server и др.

 

Совмещение гипертекстовой технологии с технологией баз данных позволило соз­дать распределенные гипертекстовые базы данных. Разрабатываются гипертекстовые модели внутренней структуры базы данных и размещения баз данных на серверах. Гипер­текстовые базы данных содержат гипертекстовые документы и обеспечивают самый бы­стрый доступ к удаленным данным. Гипертекстовые документы могут быть текстовыми, цифровыми, графическими, аудио и видео файлами. Тем самым создаются распределен­ные мультимедийные базы.

 

Гипертекстовые базы данных созданы по многим предметным областям. Практиче­ски ко всем обеспечивается доступ через интернет. Примерами гипертекстовых баз дан­ных являются правовые системы: Гарант, Юсис, Консультант + и др.

 

Рост объемов распределенных баз данных выявил следующие проблемы их ис­пользования:

 

• управление распределенными системами очень сложное;

 

• создание новых приложений, обеспечивающих распределенную обработку, об­ходится дороже, чем планировалось;

 

• производительность многих приложений в распределенных системах недостаточна;

 

• усложнилось решение проблем безопасности данных.

 

Решением этих проблем становится использование больших ЭВМ, называемых мэйнфреймами. Новое семейство мэйнфреймов IBM S/390 имеет оперативную память от 512 мегабайт до 8 гигабайт. Внутреннее дисковое устройство может иметь суммарную ем­кость до 288 гигабайт. Посредством web-сервера можно подключаться к сети интернет и вести коммерческую деятельность.

24. Технологии информационных хранилищ.

Использование баз данных не дает желаемого результата автоматизации деятель­ности предприятия. Причина проста: реализованные функции хранения, обработки дан­ных по запросу значительно отличаются от функций ведения бизнеса, так как данные, со­бранные в базах, не адекватны информации, которая нужна лицам, принимающим решения. Решением данной проблемы стала реализация технологии информационных хранилищ (складов данных).

 

Технологии информационного хранилища обеспечивают сбор данных из сущест­вующих внутренних баз предприятия и внешних источников, формирование, хранение и эксплуатацию информации как единой, хранение аналитических данных (знаний) в форме, удобной для анализа и принятия управленческих решений. К внутренним базам данных предприятия относятся локальные базы подсистем ЭИС (бухгалтерский учет, финансовый анализ, кадры, расчеты с поставщиками и покупателями и т.д.). К внешним базам - любые данные, доступные по интернету и размещенные на web cepвеpax предприятий-конкурентов, правительственных и законодательных органов, других учреждений.

 

Отличие реляционных баз данных, используемых в ЭИС, от информационного хранилища заключается в следующем:

 

Реляционные базы данных содержат только оперативные данные организации. Информационное хранилище обеспечивает доступ как к внутренним данным организации, так и к внешним источникам данных, доступным по интернету.

 

База данных ориентирована на одну модель данных функциональной подсисте­мы ЭИС. Базы обеспечивают запросы оперативных данных организации. Информацион­ные хранилища поддерживают большое число моделей данных, включая многомерные, что обеспечивает ретроспективные запросы (запросы за прошлые годы и десятилетия), запросы как к оперативным данным организации, так и к данным внешних источников.

 

Данные информационных хранилищ могут размещаться не только на сервере, но и на вторичных устройствах хранения.

 

 

Технология информационных хранилищ стала возможной после появления мейнфреймов и вторичных устройств - оптических устройств хранения данных с высокой ем­костью. Среди них можно выделить CD-ROM (оптические диски только для чтения), WORM (диски с однократной записью), МО (магнитооптические диски, стираемые и пере­записываемые), оптические библиотеки со сменой дисков вручную, библиотеки-автоматы с автоматической сменой дисков (так называемая технология Jukebox).

 

Для размещения и доступа к данным на таких устройствах разработан ряд файло­вых систем. Наиболее используемые технологии реализуют системы HSM (Hierarchical Storage Management) и DM (Data Migration). HSM реализует технологии иерархического хранилища, Data Migration - миграции данных. HSM - система создает как бы «продол­жение» дискового пространства файлового сервера на вторичных устройствах (библиоте­ках-автоматах), доступного приложениям

 

При конфигурации HSM указывается размер пространства на сервере, отводимого под буфер для обмена с оптическими библиотеками. Как только это пространство стано­вится занятым, и требуются данные из оптической библиотеки-автомата, реализуется ал­горитм миграции данных: наименее используемые файлы с сервера переносятся в биб­лиотеку-автомат, освободившееся пространство передается буферу. Из библиотеки в буфер перекачиваются требуемые файлы. Если приложение обратится к файлу, перене­сенному в библиотеку - автомат, HSM повторяет алгоритм миграции.

 

Все перемещения выполняются автоматически и приложения «не подозревают» о наличии вторичных устройств хранения. Смена оптических дисков в библиотеках-автоматах позволяет неограниченно увеличивать базу данных.

 

Для хранения данных в информационных хранилищах обычно используются выде­ленные серверы, кластеры серверов (группа накопителей, видеоустройств е общим кон­троллером), мейнфреймы.

 

Для доступа к информационным хранилищам требуются технологии, удовлетво­ряющие следующим условиям:

 

малая задержка. Хранилища данных порождают два типа трафика. Первый содержит запросы пользователей, второй - ответы. Для формирования ответа требуется время. Но так как число пользователей велико, время ответа становится неопределенным. Для обычных данных такая задержка не существенна, а для мультимедийных - существенна;

 

высокая пропускная способность. Так как данные для ответа могут находиться в разных базах на значительных расстояниях друг от друга, требуется время на формирова­ние ответа. Поэтому для обеспечения сбалансированной нагрузки требуется скорость пе­редачи не менее 100 Мега бит/сек;

 

надежность. При работе с кластерами серверов интенсивный обмен данными

требует, чтобы вероятность потери пакета была очень мала;

 

возможность работы на больших расстояниях, так как серверы кластера могут

быть удалены друг от друга.

 

Всем этим требованиям.удовлетворяет АТМ-технология, технологии Fast Ethernet, Fibre Channel и др.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...