Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Породообразующие салические и фемические минералы

Роль осадочных горных пород в строении земной коры

Земная кора слагается природными химическими соединения-ми — минералами, количество видов которых немногим превышает 2 тыс. Ограниченность природных химических соединений по срав-нению со значительно большим количеством искусственных со-единений обусловлена многими причинами, главной из которых является очень неравномерное содержание разных химических элементов в земной коре. Диапазон среднего содержания разных химических элементов достигает шести математических порядков.

Наибольшее количество минеральных видов образуют элемен-ты, содержащиеся в земной коре в наибольшем количестве. К ним относятся кислород, кремний, алюминий, железо, кальций, магний, калий, натрий. Эти элементы образуют группу соединений, массы которых в наибольшем количестве выплавлялись из мантии.

Наряду с ними значительные количества минералов образуют такие элементы, как сера, мышьяк, сурьма, медь, свинец, цинк и не-которые другие металлы, которые активно выносились в процессе дегазации вещества мантии.

Если рассматривать разнообразие минералообразования при раз-личных эндогенных процессах, то наибольшее количество минеральных видов образуется при процессах, которые протекают при участии продуктов дегазации. Минералы, образующиеся при пневматолитово-гидротермальных и пегматитовых процессах, по подсчетам известного украинского минералога Е.К.Лазаренко, со-ставляют около 30% всех минеральных видов. Еще большее ко-личество минеральных веществ возникает при процессах гипергене-за и осадкообразования, в которых под геохимическим контролем суммарного эффекта жизнедеятельности организмов образуются химические соединения дегазированных элементов, поступивших в атмосферу и гидросферу[1].

Определенные закономерности обнаруживаются в разнообразии и распределении масс минералов по классам. Отдельные данные приводились при описании минеральных групп, общая их сводка представлена в таблице 1.

Таблица 1

Соотношение между отдельными классами минералов и их содержанием в земной коре

 

Классы минералов

Минералы

Содержание в земной коре (вес, в %)

количество

В % к общему количеству минералов

I' II' I II I II
Самородные элементы Сульфиды и им подобные соединения Галогениды Оксиды и гидроксиды Силикаты Сульфаты Фосфаты, арсенаты, ванадаты Карбонаты Бораты Вольфраматы и молибдаты Хроматы Нитраты Органические соединения 50 195   86 187 375 135 266 67 42 14 5 8 70 90 200   100 200 800 260 350 80 40 15 не уч-тены 3,30 13,00   5,70 12,50 25,00 9,00 17,70 4,50 2,80 1,00 0,30 0,50 4,70 4,2 9,4   4,7 9,4 37,4 12,2 16,4 3,7 1,9 0,7 0,10 1,15   0,50 17,00 75,00 0,50 0,70 1,70     3,35 0,10 0,25   незна-чит. 17,00 80,00 0,10 0,70 1,70 незна-чит. «««
Всею 1500 2135 100,0 100,0 100,0 99,85

I' — данные Е.К.Лазаренко, 1963 II' — данные Н.И. Сафронова и Б.А.Гаврусевича, 1968

 

Данные этой таблицы позволяют прежде всего отметить наи-более многочисленные классы. Несмотря на расхождения в ре-зультатах расчетов разных авторов, совершенно очевидно, что наибольшее количество минералов характерно для силикатов. Весьма разнообразен состав класса фосфатов и их аналогов, ко-торые занимают второе место по количеству минералов (17,7%— 16,4%), а также класса сульфидов и им подобных соединений (9,4 — 13,0%), оксидов и гидроксидов (9,4 — 12,5%), сульфатов (9,0 — 12,2%). Состав других классов менее многочислен и состав-ляет несколько процентов или даже доли процента, как, напри-мер, минералы класса хроматов.

Многочисленность минералов того или иного класса не обяза-тельно означает, что эти минералы составляют значительную часть массы земной коры. Хотя наиболее разнообразный видами класс силикатов и преобладает в земной коре, но второй по многочислен-ности минералов класс фосфатов и их аналогов составляет менее процента массы литосферы (0,7%). Близкие по численности видов классы сульфидов и оксидов резко различаются по своему весово-му содержанию в земной коре: первые находятся в количестве 0,15% (по В.И. Вернадскому), вторые — 17% массы коры. Следует отметить, что значения масс минералов в земной коре точно не установлены и определяются разными учеными неодинаковыми величинами. Так даже для группы преобладающих минералов — силикатов — рассчитаны  сильно различающиеся значения. Американский геохимик Г.Вашингтон (1925) определил массу силикатов в земной коре в 63%, В.И. Вернадский (1937) — в 85%, А.Е.Ферсман (1934) — в 74,5%, Е.К.Лазаренко (1963) — в 75%, Б.А.Гаврусевич и Н.И. Сафронов (1968) — в 80%, А.Б.Ронов и А.А. Ярошевский (1967) — в 83%. По-следняя цифра, по-видимому, наиболее достоверна.

В целом можно считать, что преобладающую часть массы зем-ной коры составляют силикаты (включая кварц) и отчасти минера-лы класса оксидов и гидроксидов.

Образование массы представителей некоторых классов связано преимущественно с одним определенным процессом минералооб-разования. Как показывают данные Е.К.Лазаренко, большая часть минералов класса сульфидов (89%) имеет пневматолитово-гидро-термальное происхождение и лишь 5% возникают при литогенезе. Вольфраматы и молибдаты поровну делятся между гипергенным и пневматолитово-гидротермальным генезисом. Для некоторых клас-сов характерно возникновение преобладающего количества мине-ральных видов при процессах гипергенного минералообразования. Таковы сульфаты, фосфаты и им близкие соединения, нитраты.


Породообразующие салические и фемические минералы

В основу классификации горных пород положен генетический признак. По происхождению выделяют: 1) магматические, или изверженные, горные породы, связанные с застыванием в различных условиях силикатного расплава - магмы и лавы; 2) осадочные горные породы, образующиеся на поверхности в результате деятельности различных экзогенных факторов; 3) метаморфические горные породы, возникающие при переработке магматических, осадочных, а также ранее образованных метаморфических пород в глубинных условиях при воздействии высоких температур и давления, а также различных жидких и газообразных веществ (флюидов), поднимающихся с глубины.

Магматические горные породы наряду с метаморфическими слагают основную массу земной коры, однако, на современной поверхности материков области их распространения сравнительно невелики. В земной коре они образуют тела разнообразной формы и размеров, так называемые структурные формы, состав и строение которых зависят от химического состава исходной для данной породы магмы и условий ее застывания. В основе классификации магматических горных пород лежит их химический состав. Учитывается, прежде всего, содержание оксида кремния, по которому магматические породы условно делят на четыре группы кислотности: ультраосновные породы, содержащие более 45% кремнезема (SiO2), основные - 45-52, средние-52-65 и кислые - более 65%. Химический состав может быть определен лишь при лабораторных исследованиях. Однако минеральный состав отражает химический и может быть использован для выяснения группы кислотности.

Породообразующими минералами магматических пород являются минералы класса силикатов: кварц, полевые шпаты, слюды, амфиболы, пироксены, которые в сумме составляют около 93% всех входящих в магматические породы минералов, затем оливин, фельдшпатоиды, некоторые другие силикаты и около 1% минералов других классов. Вспомнив химический состав этих минералов, нетрудно убедиться, что в более основных породах должны преобладать цветные (темноцветные), менее богатые кремнеземом железисто-магнезиальные (мафические, или фемические) минералы, а в кислых - преимущественно светлые. Такое соотношение цветных и светлых минералов обусловливает, светлую окраску кислых пород, более темную основных и черную ультраосновных. С этим же связано увеличение плотности пород от кислых (2,58) к ультраосновным (до 3,4)[2].

ПОЛЕВЫЕ ШПАТЫ. Являются одной из важнейших групп минералов. Это главные породообразующие минералы большинства магматических, иногда метаморфических пород. Название связано с присутствием минерала на пашнях, расположенных на гранитных массивах. На долю полевых шпатов приходится около 50% всей массы земной коры. Это наиболее распространенные породообразующие минералы. Особенностью полевых шпатов является их способность образовывать широкие изоморфные ряды. По составу полевые шпаты разделяются на:

· натрий-кальциевые (плагиоклазы)

· калиевые (ортоклаз, микроклин)

Свойства всех полевых шпатов очень близки. Твердость колеблется в пределах 5-6. Окраска минералов почти всегда светлая. Большинство полевых шпатов с химической точки зрения входит в тройную систему Na[AlSi3O8] - K[AlSi3O8] - Ca[Al2Si2O8]. Часто содержат также Sr2+, Ba2+.

ПЛАГИОКЛАЗЫ. Минеральный вид переменного состава от альбита до анортита. Название от греческих слов "плагиос"- косой и "клясис"- расщепление - "косораскалывающийся" в связи с тем, что угол спайности отличается от прямого и составляет около 850. Среди плагиоклазов выделяют 6 минералов: альбит, олигоклаз, андезин, лабрадор, битовнит, анортит, исходя из процентного содержания анортитовой составляющей. Так так содержание кремнекислоты убывает от альбита к анортиту, плагиоклазы N=0-30 носят название кислых; N=30-50 - средних; N=50-100 - основных. Наиболее распространены кислые плагиоклазы. Плагиоклазы встречаются в виде зернистых агрегатов во многих магматических породах (некоторые из этих пород почти полностью состоят из плагиоклазов, например, лабрадориты). Очень распространены полисинтетические двойники. Цвет плагиоклазов белый, серовато-белый, иногда с зеленоватым или красноватым оттенком из-за различных включений. Блеск стеклянный. Свойства в ряду минералов меняются аддитивно: плотность увеличивается от 2,62 (альбит) до 2,76 (анортит). Спайность совершенная. Твердость 6-6,5. Для олигоклаза характерна голубая, а для лабрадора синяя иризация.

Диагностика. По внешним признакам возможно диагностировать альбит, лабрадор и при известном навыке олигоклаз.

Происхождение. Плагиоклазы - эндогенные минералы. Являются главными породообразующими минералами. Образуются в магматических породах и пегматитах, метаморфических породах, известны в скарнах и грейзенах. В поверхностных условиях неустойчивы и при выветривании полностью разлагаются переходя либо в каолинит и другие кандиты, либо в смектиты - в зависимости от физико-химических условий. Значение. Используются как керамическое сырье. Лабрадорит - облицовочный камень. Беломорит - материал для различных поделок.

КВАРЦ - SiO2. Тригональная сингония. Происхождение названия неизвестно. Один из наиболее чистых минералов. Содержание отдельных примесей обычно не превышает n*10-3-n*10-4%. Переход - кварц (тригональная синг.) => -кварц (гексагональная синг.) осуществляется энантиотропно при температуре 573оС. Сплошные массы различной плотности и зернистости от грубошестоватых до скрытокристаллических, роговиково-подобных (яшмы, кремни), натечных (халцедон), землистых. Часто кристаллы призматического или дипирамидально- трапецоэдрического габитуса. Цвет белый, серый, розовый и других оттенков. Бесцветные прозрачные кристаллы - горный хрусталь; сиреневый кварц - аметист. Скрытокристаллический кварц - халцедон. Блеск от стеклянного до тусклого, жирного, иногда шелковистого. Спайности нет. Твердость 7. Излом раковистый.

Диагностика. Высокая твердость, отсутствие спайности, стеклянный блеск, раковистый излом.

Происхождение. Магматический в кислых горных породах, в гранитных пегматитах в ассоциации с полевым шпатом, слюдой, топазом, бериллом. Гидротермальный с сульфидами. Типичный минерал метаморфических пород: сланцев, гнейсов, железистых кварцитов. Гипергенный (кремень, халцедон). В поверхностных условиях устойчив. Накапливается в россыпях, часто в ассоциации с золотом.

Значение. Используется в стекольной, керамической промышленности, металлургии. В радиотехнике и оптических приборах. Широко используется в ювелирных поделках. Кварциты - строительный материал.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...