Типы структурных повреждений ДНК
Мутация.ДНК может повреждаться разнообразными мутагенами, к которым относятся окисляющие и алкилирующие вещества, а также высокоэнергетическая электромагнитная радиация — ультрафиолетовое и рентгеновское излучение. Тип повреждения ДНК зависит от типа мутагена. Например, ультрафиолет повреждает ДНК путём образования в ней димеров тимина, которые возникают при образовании ковалентных связей между соседними основаниями. Оксиданты, такие как свободные радикалы или перекись водорода, приводят к нескольким типам повреждения ДНК, включая модификации оснований, в особенности гуанозина, а также двухцепочечные разрывы в ДНК[24]. По некоторым оценкам, в каждой клетке человека окисляющими соединениями ежедневно повреждается порядка 500 оснований[25][26]. Среди разных типов повреждений наиболее опасные — это двухцепочечные разрывы, потому что они трудно репарируются и могут привести к потерям участков хромосом (делециям) и транслокациям. Многие молекулы мутагенов вставляются (интеркалируют) между двумя соседними парами оснований. Большинство этих соединений, например, этидий, даунорубицин, доксорубицин и талидомид имеют ароматическую структуру. Для того чтобы интеркалирующее соединение могло поместиться между основаниями, они должны разойтись, расплетая и нарушая структуру двойной спирали. Эти изменения в структуре ДНК мешают транскрипции и репликации, вызывая мутации. Поэтому интеркалирующие соединения часто являются канцерогенами, наиболее известные из которых — бензопирен, акридины, афлатоксин и бромистый этидий[27][28][29]. Несмотря на эти негативные свойства, в силу их способности подавлять транскрипцию и репликацию ДНК, интеркалирующие соединения используются в химиотерапии для подавления быстро растущих клеток рака[30].
Источники повреждения ДНК: УФ излучение,Радиация,Химические вещества,Ошибки репликации ДНК,Апуринизация — отщепление азотистых оснований от сахарофосфатного остова,Дезаминирование — отщепление аминогруппы от азотистого основания. Основные типы повреждения ДНК: Повреждение одиночных нуклеотидов, Повреждение пары нуклеотидов, Разрыв цепи ДНК, Образование поперечных сшивок между основаниями одной цепи или разных цепей ДНК. Репарация — особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации. Каждая из систем репарации включает следующие компоненты: фермент, «узнающий» химически изменённые участки в цепи ДНК и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий повреждённый участок; фермент (ДНК-полимераза), синтезирующий соответствующий участок цепи ДНК взамен удалённого; фермент (ДНК-лигаза), замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность. Типы репарации.У бактерий имеются по крайней мере 3 ферментные системы, ведущие репарацию — прямая, эксцизионная и пострепликативная. Прямая репарация наиболее простой путь устранения повреждений в ДНК, в котором обычно задействованы специфические ферменты, способные быстро (как правило, в одну стадию) устранять соответствующее повреждение, восстанавливая исходную структуру нуклеотидов. Так действует, например, O6-метилгуанин-ДНК-метилтрансфераза, которая снимает метильную группу с азотистого основания на один из собственных остатков цистеина. Эксцизионная репарация (англ. excision — вырезание) включает удаление повреждённых азотистых оснований из ДНК и последующее восстановление нормальной структуры молекулы. Пострепликативная репарация-Tип репарации, имеющей место в тех случаях, когда процесс эксцизионной репарации недостаточен для полного исправления повреждения: после репликации с образованием ДНК, содержащей поврежденные участки, образуются одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи белка RecA. Пострепликативная репарация была открыта в клетках E.Coli, не способных выщеплять тиминовые димеры. Это единственный тип репарации, не имеющий этапа узнавания повреждения.
49. Спонтанный мутагенез, т.е. процесс возникновения мутаций в организме в отсутствие намеренного воздействия мутагенами, представляет собой конечный результат суммарного воздействия различных факторов, приводящих к повреждениям генетических структур в процессе жизнедеятельности организма. Причины возникновения спонтанных мутаций можно разделить на: • экзогенные (естественная радиация, экстремальные температуры и др.); • эндогенные (спонтанно возникающие в организме химические соединения-метаболиты, вызывающие мутагенный эффект; ошибки репликации, репарации, рекомбинации; действие генов-мутаторов и антимутаторои; транспозиция мобильных генетических элементов и др.). Организм человека за год поглощает в среднем 0,095 рад энергии ионизирующих излучений, поступающих от естественной радиации (у-излучение Земли, космические лучи, радиоактивные элементы земной коры и атмосферы такие, как радон, углерод С, калий К40 и др.). Эта доза зависит от высоты над уровнем моря и географической широты. Кроме того, радиация выше в районах, где есть выходы на поверхность первичных пород. У человека доля мутаций, индуцированных естественной радиацией составляет до 25%, а у дрозофилы —лишь 0, 1% всех спонтанных мутаций. Относительно УФ-излучения выше уже было указано, что оно практически не играет никакой роли в возникновении мутаций в половых клетках эукариот, не обладая достаточной проникающей способностью. В то же время, у одноклеточных организмов и вирусов под действием ультрафиолета образуется значительная часть спонтанных мутаций.
50. Геномные мутации характеризуются изменением числа хромосом. У человека известны полиплоидия (в том числе тетраплоидия и триплоидия) и анеуплоидия. Полиплоидия — увеличение числа наборов хромосом, кратное гаплоидному (Зn, 4n, 5n и т.д.). Причины: двойное оплодотворение и отсутствие первого мейотического деления. У человека полиплоидия, а также большинство анеуплоидий приводят к формированию леталей. Анеуплоидия — изменение (уменьшение — моносомия, увеличение — трисомия) числа хромосом в диплоидном наборе, т.е. не кратное гаплоидному (2n+1, 2n-1 и т.д.). Механизмы возникновения: нерасхождение хромосом (хромосомы в анафазе отходят к одному полюсу, при этом на каждую гамету с одной лишней хромосомой приходится другая — без одной хромосомы) и «анафазное отставание» (в анафазе одна из передвигаемых хромосом отстаёт от всех других). Трисомия — наличие трёх гомологичных хромосом в кариотипе (например, по 21-й паре, что приводит к развитию синдрома Дауна; по 18-й паре — синдрома Эдвардса; по 13-й паре — синдрома Патау). Моносомия — наличие только одной из двух гомологичных хромосом. При моносомии по любой из аутосом нормальное развитие эмбриона невозможно. Единственная совместимая с жизнью моносомия у человека — по хромосоме X — приводит к развитию синдрома Шерешевского—Тернера (45,Х0). 51.Частотой аллеля называют отношение количества данных аллелей у всех особей к общему количеству аллелей в популяции. Частоту доминантного аллеля обычно обозначают буквой p, частоту рецессивного аллеля – буквой q. Если ген представлен двумя аллелями, то выполняется математическое равенство p + q = 1. Таким образом, зная частоту одного из аллелей, можно определить частоту и другого аллеля. Так, если частота доминантного аллеля равна 78 %, то частота рецессивного аллеля равняется q = 1 – p = 1 – 0,78 = 0,22 (или 22 %). Для частот аллелей существует условие равновесия Харди–Вайнберга. Частоты доминантного и рецессивного аллелей остаются неизменными, если в популяции выполняются следующие условия: размеры популяции достаточно велики; спаривание и размножение особей происходит случайным образом; естественный отбор отсутствует (все генотипы одинаково приспособлены к внешним условиям); различные поколения не скрещиваются между собой; не возникает новых мутаций; отсутствует обмен генами с другими популяциями.
Вид и видообразование. основе типологической концепции вида лежат представления о существовании объективных различий между группами особей по ряду существенных признаков, то есть признаков, характерных для одного вида и отсутствующих у других видов. Вид – это нечто отличное, нечто иного сорта (в этом случае можно говорить о видах учебной деятельности, о видах минералов; не случайно русскому слову вид соответствует латинское species). С типологической точки зрения, вид – это совокупность особей, сходных между собой, населяющих определенный ареал, способных скрещиваться между собой, давать плодовитое потомство, похожее на родителей и отличающихся по ряду существенных признаков от других подобных совокупностей. Классификация видов по площади видового ареала:а. Виды-космополиты, встречающиеся практически во всех биогеографических областях Земли. Чаще всего это синантропные виды (подорожник большой, пастушья сумка, комнатная муха, серая крыса).б. Широкоареальные виды, населяющие территории целых биогеографических царств, областей, провинций. Например, циркумбореальным ареалом характеризуются волки, лисы, медведи.в. Узкоареальные виды-эндемики, ограниченные в своем распространении небольшой географической областью. Различают палеоэндемики и неоэндемики. Палеоэндемики, или реликты – это виды с ограниченным современным распространением, но населявшие в прошлом обширные территории (например, гинкго и метасеквойя в Западном и Центральном Китае, секвойя в Калифорнии, латимерия в р-не Коморских островов, утконос в Австралии и Тасмании). Неоэндемики – это молодые прогрессивные формы, возникающие на недавно изолированных территориях – островах, горных районах, водоемах. Например, в биоте оз. Байкал около 75% видов-эндемиков: байкальская нерпа, байкальский омуль, 2 вида голомянок, ~ 50 видов бычков, ~ 250 видов бокоплавов, ~ 80 видов планарий, множество эндемичных полихет, моллюсков и др. Отметим, что видовое разнообразие выше у малоподвижных форм. 2. Классификация видов по экологической валентности:а. Эврибионтные виды с широким экологическим спектром, населяющие различные местообитания (сосна). Характеризуются сплошным ареалом и более или менее равномерным распределением плотности популяций.б. Стенобионтные виды с узким экологическим спектром, населяющие строго определенные местообитания; это узкоспециализированные виды, симбионты и паразиты.
3. Классификация видов по подвижности особей:а. Малоподвижные или сидячие формы с ограниченной способностью к расселению (например, при отсутствии личинки, обеспечивающей расселение – паренхимулы, планулы, трохофоры). Популяции подобных видов называются «вязкими».б. Организмы, подвижные во взрослом состоянии или имеющие личиночные стадии, способные к расселению. Популяции подобных видов называются «текучими». 4. Монотипические и политипические виды:а. Концепция монотипического вида основана на представлении о существовании единого типа вида. Тип вида представляет собой коллекционный экземпляр (голотип), на основании которого выполнено первое описание вида, и который хранится в гербарии или зоологическом музее. Реально существующие организмы могут несколько отличаться от типового экземпляра, тогда отличия рассматриваются как отклонения от нормы, вариации. Монотипический вид – это идеальный вид для ученого-систематика. Примерами монотипических видов являются островные виды–эндемики или узкоспециализированные (стенобионтные) виды.б. Концепция политипического вида основана на представлении о существовании нескольких типов вида. Все выделенные типы должны быть представлены соответствующими коллекционными экземплярами. Политипический вид неоднороден по всем критериям и представляет собой систему несовершенных таксонов. Виды с более или менее широким ареалом характеризуются сложной таксономической, экологической и хорологической (пространственной) структурой. Видообразование – это качественный этап эволюционного процесса. Это означает, что образованием видов завершается микроэволюция и начинается макроэволюция. Согласно общепринятой точке зрения, в основе видообразования лежит принцип дивергенции. В результате дивергенции увеличивается число видов. Дивергенция (от лат. divergo – отклоняюсь, отхожу) – это расхождение признаков организмов в ходе эволюции разных групп (филетических линий), возникших от одного предка. Дивергенцией называют также разделение в процессе эволюции единого таксона на два или несколько. Термин «дивергенция признаков» введён Ч. Дарвином (1859). 54. АУТБРИДИНГ, применяемое в селекции животных и растений скрещивание неродственных особей. Обычно такие особи не имеют ближайших общих предков и происходят из разных популяций. В результате неродственного скрещивания у потомства уменьшается вероятность присутствия одинаковых аллелей генов, то есть повышается уровень гетерозиготности. Гетерозиготные особи часто обладают более ценными биологическими признаками, чем гомозиготные. Применяя аутбридинг, получают гетерозисные формы, превосходящие по ряду желаемых признаков родительские организмы. Инбри́динг (от англ. in — «внутри» и breeding — «разведение») — скрещивание близкородственных форм в пределах одной популяции организмов (животных или растений). Термин «инбридинг» обычно используется в отношении животных, а для растений более распространён термин «инцухт» (нем. Inzucht); этот термин также часто используется при описании взаимоотношений между людьми — например, в биографиях.Инцест является ярко выраженной формой инбридинга, когда скрещивание происходит между особями, связанными прямым родством. Предельная форма инбридинга — самооплодотворение, когда организм оплодотворяет сам себя.Инбридинг широко используется селекционерами для усиления целевых характеристик породы или сорта. Наиболее распространённая разновидность инбридинга, которая используется при селекции, называется лайнбридингом (англ. linebreeding). При лайнбридинге потомки спариваются с каким-либо своим предком.Как известно, диплоидный организм получает каждый ген в двух экземплярах (аллелях) — от отца и от матери. Если эти гены различаются, то особь называется гетерозиготной (по данному гену), а если не различаются, то гомозиготной. При инбридинге родители являются родственниками и поэтому имеют много одинаковых генов, в результате чего гомозиготность увеличивается с каждым поколением.Инбридинг приводит к повышению постоянства фенотипических признаков в потомстве и, в конечном итоге, производится для получения линий генетически идентичных особей (инбредные линии), на которых удобно проводить биологические и медицинские эксперименты.При близкородственном скрещивании (или самоопылении у растений) может возникать депрессия: уменьшение урожайности растительных культур, измельчание животных, возникновение аномалий и уродств. Это объясняется гомозиготностью по вредным рецессивным генам.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|