Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Теория и сущность биоиндикации




Все биологические системы - будь то организмы, популяции или биоценозы - в ходе своего развития приспособились к комплексу факторов местообитания. Они завладели внутри биосферы определенной областью, экологической нишей, в которой находят подходящие условия существования и могут нормально питаться и размножаться. Каждый организм обладает в отношении любого действующего на него фактора генетически детерминированным, филогенетически приобретенным, уникальным физиологическим диапазоном толерантности, в пределах которого этот фактор является для него переносимым [1].

Физиологическая толерантность и экологическая потенция организма определяют его индикаторную ценность. В результате каждая биологическая система (организм, популяция, биоценоз) характеризует зависящее от времени воздействие на нее факторов среды - природных, измененных человеком или антропогенных. Метод оценки абиотических и биотических факторов местообитания при помощи биологических систем называют биоиндикацией [1].

В соответствии с этим организмы или сообщества организмов, жизненные функции которых так тесно коррелируют с определенными факторами среды, что могут применяться для их оценки, называются биоиндикаторами [1].

Слово биоиндикация образовано от греческого bios - жизнь и латинского indicare - указывать. Под биологическими объектами понимаются любые биологические системы на различных уровнях организации живой материи (молекулы органических веществ, клетки, ткани, органы, организмы, популяции, виды, группировки, сообщества организмов), с включением при необходимости костных компонентов (биогеоценозы, почвы, ландшафты). При этом в целях биоиндикации используются генетические, биохимические и физиологические нарушения хромосом, биомембран, органелл, обмена веществ (белков и аминокислот, углеводов, включая фотосинтез; липидов, минерального и энергетического обменов); активности ферментов и гормонов; морфологические, анатомические, биоритмические и поведенческие отклонения; флористические, фаунистические, популяционно-динамические, биогеоценотические и, наконец, ландшафтные изменения [18].

Универсальным показателем изменения гомеостаза тест-организма является состояние стресса при попадании из "чистой" среды в "загрязненную" [2].

В биологии под стрессом понимается реакция биологической системы на экстремальные факторы среды (стрессоры), которые могут в зависимости от силы, интенсивности, момента и продолжительности воздействия более или менее сильно влиять на систему [2].

Опасность антропогенных стрессоров состоит в том, что биологические системы - будь то организмы, популяции или биоценозы - недостаточно адаптированы к ним. Антропогенные стрессоры создаются с такой скоростью, что в живых системах часто не успевают активизироваться соответствующие адаптационные процессы [2].

Стрессовое воздействие среды приводит к отклонению основных параметров организма от оптимального уровня [2].

Для выяснения тесноты связи биоиндикаторов с отдельными объектами индикации (индикатами) используют такие показатели, как достоверность, распространённость и значимость индикатора. Достоверность (Д) и распространённость (Р) индикатора представляет собой выраженные в долях от единицы или в процентах отношения числа случаев нахождения индикатора на объекте индикации (Т) к общему числу встреч индикатора (R) и индиката (S):

 

Д = Т / R;

Р = Т / S.

 

Значимость индикатора (Z) устанавливают путём сопоставления показателей его достоверности и распространённости. Количественно она может быть оценена в долях от единицы путём произведения достоверности на распространённость в том же измерении и при необходимости выражена в процентах:

 

Z = Д·Р, или= T2/ (R·S) [18].

 

Абсолютные индикаторы встречаются почти исключительно совместно с объектом индикации, их достоверность и распространённость превышают 90-95%, а значимость - 0,8. У хороших индикаторов эти показатели составляют соответственно 80-95%, 75-90% и 0,6-0,8; у удовлетворительных - 60-80%, 50-75% и 0,3-0,6%; у сомнительных - 50-60%, 20-50% и 0,1-0,3. В ряде случаев целесообразно обращать внимание и на отрицательные индикаторы, распространённые на объектах фона и не встречающиеся или очень редко встречающиеся на объектах индикации [18].

Понятие индикации в большинстве случаев относительное. Так, ботанические индикаторы, как правило, проявляют свои свойства в пределах определённых природно-территориальных комплексов. По степени устойчивости связи с индикатом они делятся на панареальные (сохраняют связь с индикатом на всей территории ареала), зональные (имеют индикационное значение в пределах географических зон и подзон), региональные (сохраняют своё значение в пределах одной или нескольких областей со сходными физико-географическими условиями), локальные (обнаруживают связь с индикатом в одном физико-географическом районе) [18].

По характеру связи с индикатом индикаторы делятся на прямые - имеющие непосредственную связь с индикатами, и косвенные - связанные с индикатом через промежуточное звено. Хорошо и непосредственно видимые индикаторы получили название экзоиндикаторов, а замаскированные и скрытые - эндоиндикаторов [18].

Индикационные признаки индикаторов выявляют методами пассивного и активного мониторинга. При пассивном мониторинге в популяциях, группировках, сообществах свободно живущих организмов (вирусов, бактерий, грибов, лишайников, растений, животных) исследуют их состав, количественные показатели, структуру, видимые или незаметные отклонения от нормы, повреждения, обнаруживающие положительные корреляционные связи с вполне определёнными индикатами и являющиеся следствием их прямого или косвенного влияния. Широкое распространение получили картографический и дистанционный методы с использованием аэрофото - и космических снимков, перспективны биохимические и генетические методы биоиндикационных исследований. К пассивному мониторингу относятся также и экспериментальные вегетационные опыты, где оценивают ответные реакции культивируемых организмов на действие различных по интенсивности природных и антропогенных факторов. При активном мониторинге пытаются обнаружить антропогенные стрессовые воздействия на тест-организмы или тест-объекты, находящиеся в стандартизированных условиях. При этом рекомендуется подвергать действию изучаемых факторов одновременно несколько видов растений или других организмов (видовой подход), различающихся по устойчивости к стрессорам, устанавливать особенности воздействия стрессоров в зависимости от их дозы. В качестве биотестов используются бактерии (особенно кишечная палочка), водоросли (в частности, хлорелла), низшие грибы, инфузории, низшие ракообразные, беззубки, личинки хирономид, рыб, земноводных, семена редиса, табака [18].

Круг объектов индикации в последние годы расширяется. К ним относится индикация климата, геологического строения, горных пород, тектельности, связанные с восходящим движением грунтовых вод по разрывам [18].

Наибольшую ценность представляют биоиндикаторы, присутствующие на объекте индикации в большом количестве и с высокой достоверностью, отличающиеся однородными свойствами, не требующие больших затрат для их выявления и получения достаточно точных и воспроизводимых результатов, имеющие диапазоны погрешности по сравнению с другими методами не более 20% [18].

Многолетний опыт ученых разных стран по контролю состояния окружающей среды показал преимущества, которыми обладают живые индикаторы:

·в условиях хронических антропогенных нагрузок могут реагировать даже на относительно слабые воздействия вследствие кумулятивного эффекта; реакции проявляются при накоплении некоторых критических значений суммарных дозовых нагрузок;

·суммируют влияние всех без исключения биологически важных воздействий и отражают состояние окружающей среды в целом, включая ее загрязнение и другие антропогенные изменения;

·исключают необходимость регистрации химических и физических параметров, характеризующих состояние окружающей среды;

·фиксируют скорость происходящих изменений;

·вскрывают тенденции развития природной среды;

·указывают пути и места скоплений в экологических системах различного рода загрязнений и ядов, возможные пути их попадания в пищу человека;

·позволяют судить о степени вредности любых синтезируемых человеком веществ для живой природы и для него самого, причем дают возможность контролировать их действие [2].

Выделяют две формы отклика живых организмов, используемых в целях биоиндикации, - специфическую и неспецифическую. В первом случае происходящие изменения связаны с действием одного какого-либо фактора. При неспецифической биоиндикации различные антропогенные факторы вызывают одинаковые реакции [2].

В зависимости от типа ответной реакции биоиндикаторы подразделяют на чувствительные и кумулятивные. Чувствительные биоиндикаторы реагируют на стресс значительным отклонением от жизненных норм, а кумулятивные накапливают антропогенное воздействие, значительно превышающее нормальный уровень в природе, без видимых изменений [2].

В качестве биоиндикаторов могут быть использованы представители всех "царств" живой природы. Для биоиндикации не пригодны организмы, поврежденные болезнями, вредителями и паразитами. Идеальный биологический индикатор должен удовлетворять ряду требований:

·быть типичным для данных условий;

·иметь высокую численность в исследуемом экотопе;

·обитать в данном месте в течение ряда лет, что дает возможность проследить динамику загрязнения;

находиться в условиях, удобных для отбора проб;

·давать возможность проводить прямые анализы без предварительного концентрирования проб;

·характеризоваться положительной корреляцией между концентрацией загрязняющих веществ в организме-индикаторе и объекте исследования;

·использоваться в естественных условиях его существования;

·иметь короткий период онтогенеза, чтобы была возможность отслеживания влияния фактора на последующие поколения [2].

Ответная реакция биоиндикатора на определенное физическое или химическое воздействие должна быть четко выражена, т.е. специфична, легко регистрироваться визуально или с помощью приборов [2].

При выборе индикатора необходимо принимать во внимание соображения экономии и учитывать характер использования тех или иных организмов. Например, широко распространенные на исследуемой территории и не занесенные в "Красную книгу" [2].

На уровне популяции биоиндикация проводится в том случае, если процесс распространения негативных изменений охватывает такое количество особей, при котором заметно сокращается численность популяции, изменяется ее половозрастная структура, сокращается продолжительность жизни, происходит сдвиг фенологических фаз и др. [2].

Экосистемный подход к оценке среды дает возможность ранней диагностики ее изменений. Сигналом тревоги служит разбалансировка продукционно-деструкционных процессов. Диагностическими признаками таких сдвигов являются, например, накопление органического вещества, заиление, зарастание водоемов, усиленное развитие микроорганизмов [2].

В качестве объектов для биоиндикации применяются разнообразные организмы - бактерии, водоросли, высшие растения, беспозвоночные животные, млекопитающие. Для гарантированного выявления присутствия в природных средах токсического агента неизвестного химического состава, как правило, используется набор объектов, представляющих различные группы сообщества. С введением каждого дополнительного объекта эффективность схемы испытаний повышается, однако нет смысла бесконечно расширять ассортимент обязательных объектов для использования в такой оценке [2].

Для биоиндикации необходимо выбирать наиболее чувствительные сообщества, характеризующиеся максимальными скоростью отклика и выраженностью параметров. Например, в водных экосистемах наиболее чувствительными являются планктонные сообщества, которые быстро реагируют на изменение среды благодаря короткому жизненному циклу и высокой скорости воспроизводства. Бентосные сообщества, где организмы имеют достаточно длинный жизненный цикл, более консервативны: перестройки происходят в них при длительном хроническом загрязнении, приводящем к необратимости процессов [2].

В настоящее время оценка степени экологической опасности традиционно осуществляется путем определения в окружающей среде отдельных потенциально вредных веществ или воздействий и сравнения полученных результатов с законодательно установленными для них предельно допустимыми величинами. В то же время такой способ контроля имеет ряд существенных недостатков. Аналитические методы, как правило, трудоемки, не всегда экспрессны, требуют дорогостоящего, иногда дефицитного оборудования и реактивов, а также высококвалифицированного обслуживающего персонала. Но главный их недостаток в том, что эти методы не могут гарантировать достоверной оценки экологической опасности, сколь бы широким не был спектр анализируемых веществ. Ведь важны не сами уровни загрязнений и воздействий, а те биологические эффекты, которые они могут вызвать и о которых не может дать информацию даже самый точный химический или физический анализ [2].

Методы биоиндикации

Методы биоиндикации основаны на наблюдениях отдельных организмов, популяции или сообществ организмов в естественной среде обитания с целью определения по их реакциям (изменениям) качества окружающей среды. В сельском хозяйстве широко применяется метод биоиндикации для диагностики питания сельскохозяйственных культур. Данный метод визуальной биоиндикации основан на изучении внешних признаков фито - и биоценозов, которые отражают качественные изменения среды обитания [21].

В качестве признаков визуальной биоиндикации используется внешний вид растений. Таких признаков, связанных с нарушением питания растений, множество, в частности: замедление роста стеблей; ветвей и корней; пожелтение; бурение; загибание листьев; "краевые ожоги"; образование гнили; одревеснение стеблей и др. [21].

Для целей биоиндикации качества окружающей среды могут применяться популяционные и экосистемные критерии, которые характеризуются показателями: численности и биомассы отдельных видов; соотношением в сообществах различных видов, их распределение по обилию и т.п. [21].

Для получения более достоверных, долгосрочных прогнозов наряду с видами-индикаторами отслеживаются изменения, происходящие в популяциях устойчивых видов, способных выдерживать значительные возмущающие воздействия (воздействия экологически неблагоприятных факторов) в течение длительного времени [21].

Под влиянием загрязняющих веществ в организме происходят перестройка структуры и функции клеток. Результаты гистологических исследований таких изменений могут свидетельствовать о качестве окружающей среды. Злокачественный рост клеток, дегенеративные изменения или появление некротических очагов характеризуют высокую степень токсичности среды обитания [21].

Патолого-анатомические и гистологические методы биоиндикации особое внимание уделяют изучению репродуктивной системы, любые изменения которой непосредственно связаны с жизненно важными параметрами популяции. Репродуктивная система очень чувствительна к стрессовым воздействиям, и любое нарушение можно рассматривать как сигнал о наличии неблагоприятных изменений в окружающей среде [21].

Эмбриональные методы диагностики базируются на том обстоятельстве, что наиболее уязвимыми к воздействию внешних возмущений являются ранние стадии развития многоклеточных организмов. На стадиях дробления и формирования зародышевых органов и тканей даже незначительные воздействия, как правило, приводят к видимым уродствам более поздних стадий или даже гибели зародышей. В качестве биоиндикаторов обычно используются быстро развивающиеся и дающие многочисленное потомство организмы (рыбы, моллюски, земноводные, насекомые). Данные организмы могут быть использованы и как тест-объекты для биотестирования окружающей среды [21].

Более тонкими и точными методами биодиагностики являются иммунологические и генетические методы [21].

Иммунологические - основаны на измерениях показателей иммунной системы под воздействием внешних возмущающих факторов. В результате любого рода отрицательного воздействия на иммунную систему живых организмов в первую очередь изменяется функциональное состояние иммунокомпетентных клеток - спленоцитов и лимфоцитов. При введении в клетки организма специальных веществ - стандартных мутагенов (липополисахаридов и др.) - в зависимости от вида воздействия ингибирование реакции может свидетельствовать о нарушении иммунологического статуса организма [21].

Генетические методы позволяют анализировать генетические изменения, возникающие вследствие неблагоприятных внешних воздействий. Появление таких изменений характеризует мутагенную активность среды, а возможность их сохранения в клеточных популяциях отражает эффективность иммунной потенции организма [21].

В нормальных условиях большая часть генетических аномалий удаляется из популяций посредством иммунной системы организма. Наличие таких аномалий можно использовать в качестве индикатора стресса, ведущего к продукции аномальных клеток и снижению способности иммунной системы организма их уничтожать [21].

Такое разнообразие методов биоиндикации говорит об их несовершенстве. Действительно, биоиндикация предусматривает контроль уже состоявшегося или происходящего загрязнения компонентов окружающей среды по функциональным характеристикам их обитателей и экологическим характеристикам организмов [21].

Разработка единой системы показателей токсичного загрязнения окружающей среды на сегодняшний день встречает серьезные трудности. Постепенные изменения видового состава формируются в результате длительного отравления и становятся явными в случае далеко зашедших изменений. Таким образом, видовой состав не даёт оценки на момент исследования. В этом плане методы биоиндикации загрязнения окружающей среды инерционны. В холодное время года системы биологической индикации малоэффективны [21].

Однако отличительная простота методов оценки экологической обстановки методами биоиндикации, отсутствие потребности в специальном инструментальном обеспечении являются их бесспорным достоинством [21].

Умение объединить в комплексную форму биоиндикацию, биотестирование и химико-аналитические методы диагностики экологической обстановки позволяет минимизировать затраты на исследования. Именно комплексное использование методов обеспечивает перспективу биоиндикации [21].

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...