Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором




Общие положения

Возможность создания электрической машины как электромеханического преобразователя базируется на электромагнитном взаимодействии, которое осуществляется посредством электрического тока и магнитного поля. Электрическая машина, в которой электромагнитное взаимодействие осуществляется при помощи магнитного поля называется индуктивной, а в которой при помощи электрического — ёмкостной. Ёмкостные машины практически не используются, так как при конечной проводимости воздушной среды (при наличии влаги) заряды будут исчезать из активной зоны электрической машины в землю (то есть огромные потери энергии).

Классификация

 

Если электрическая энергия преобразуется в механическую работу и тепло, тогда электрическая машина является электрическим двигателем; когда механическая работа преобразуется в электрическую энергию и тепло, тогда электрическая машина является электрическим генератором; когда электрическая энергия одного вида преобразуется в электрическую энергию другого вида, тогда электрическая машина является электромеханическим преобразователем или трансформатором и когда механическая и электрическая энергии преобразуются в тепло, тогда электрическая машина является электромагнитным тормозом. Для большинства машин выполняется принцип обратимости, когда одна и та же машина может выступать как в роли двигателя, так и в роли генератора или электромагнитного тормоза.

В большинстве электрических машин выделяют ротор — вращающуюся часть, и статор — неподвижную часть, а также воздушный зазор, их разделяющий.

По принципу действия выделяют нижеследующие виды машин:

  1. Асинхронная машина — электрическая машина переменного тока, в которой частота вращения ротора отличается от частоты вращения магнитного поля в воздушном зазоре на частоту скольжения.
  2. Синхронная машина — электрическая машина переменного тока, в которой частоты вращение ротора и магнитного поля в зазоре равны.
  3. Машина двойного питания (и как вариант - асинхронизированная синхронная машина) — электрическая машина переменного тока, в которой ротор и статор в общем случае имеют разные частоты питающего тока. В результате ротор вращается с частотой, равной сумме (разности) питающих частот.
  4. Машина постоянного тока — электрическая машина, питаемая постоянным током и имеющая коллектор.
  5. Трансформатор — электрический аппарат [2] переменного тока (электрический преобразователь), преобразующий электрический ток напряжения одного номинала в электрический ток напряжения другого номинала. Существуют статические и поворотные трансформаторы.
  6. Инвертор на базе электрической машины (см. также Умформер) — как правило, пара электрических машин, соединённых валами, выполняющих преобразование рода тока (постоянный в переменный или наоборот), частоты тока, числа фаз, напряжений.
  7. Вентильный двигатель — электрическая машина постоянного тока, в которой механический коллектор заменён полупроводниковым коммутатором (ПК), возбуждение осуществляется от постоянных магнитов, размещенных на роторе; а статорная обмотка, как в синхронной машине. ПК по сигналам логического устройства поочерёдно, в определённой последовательности, попарно подключает фазы электродвигателя к источнику постоянного тока, создавая вращающееся поле статора, которое, взаимодействуя с полем постоянного магнита ротора, создаёт вращающий момент электродвигателю.
  8. сельсин -электрическая машина для дистанционной передачи информации об угле поворота.

Назначения

  • Преобразование энергии — основное назначение электрических машин в качестве двигателя или генератора.
  • Преобразование переменного тока в постоянный (см. умформер).
  • Преобразование величины напряжения.
  • Усиление мощности электрических сигналов. В этом случае электрическая машина называется электромашинным усилителем.
  • Повышение коэффициента мощности электрических установок. В этом случае электрическая машина называется синхронным компенсатором. [3]
  • Дистанционная передача информации (сельсин)

 

47) Вращающее магнитное поле

Вращающееся магнитное поле. Обычно под вращающимся магнитным полем понимается магнитное поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается с постоянной угловой скоростью. Впрочем, вращающимися называют и магнитные поля магнитов, вращающихся относительно оси, не совпадающей с их осью симметрии (например, магнитные поля звезд или планет).

Вращающееся магнитное поле создают, накладывая два или более разнонаправленных переменных, зависящих от времени по синусоидальному закону, магнитных поля одинаковой частоты, но сдвинутых друг относительно друга по фазе.

Это было на практике осуществлено независимо в 1882 году сербским инженером Н. Тесла и, немного позже, итальянским физиком Г. Феррарисом. Применяется в синхронных и асинхронных машинах.

Разность фаз для двухфазных систем (два перпендикулярных электромагнита) должна составлять 90°, а для 3-фазных (три электромагнита, направленных в одной плоскости под углом 120° друг к другу) 120°.

48) Устройство трехфазного асинхронного электродвигателя

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором

Устройство. Трехфазный асинхронный электродвигатель с короткозамкнутым ротором состоит из корпуса 7, неподвижного статора 6, вращающего ротора и двух подшипниковых щитов 4 с подшипниками качения или скольжения, расположенными в центре щитов (рис. 1). Статор двигателя состоит из сердечника 6 и трехфазной обмотки 8. Корпус изготовляется из чугуна или из алюминиевых сплавов.

Сердечник статора (рис. 2, а) набирается из штампованных листов электротехнической стали толщиной 0,3 или 0,5 мм, изолированных друг от друга покраской лаком для уменьшения потерь на вихревые токи. На внутренней поверхности сердечника имеются открытые пазы для укладки в них трехфазной обмотки, выполненной из изолированного провода. Оси обмоток расположены симметрично под углом 120° друг к другу.

Ротор (рис. 2, б) асинхронного электродвигателя состоит из вала, опирающегося на подшипники, сердечника и обмотки. Сердечник ротора набирается из штампованных листов электротехнической стали. На внешней поверхности сердечника имеются пазы, в которых размещаются медные или алюминиевые стержни обмотки ротора без изоляции. Концы стержней путем сварки или литья под давлением соединяются с кольцами. В результате получается короткозамкнутая обмотка ротора, напоминающая беличье колесо (рис. 3).

Рис. 1 Устройство трехфазного электродвигателя
  • 1 - вал ротора,
  • 2 - крышка подшипника,
  • 3 - подшипник,
  • 4 - подшипниковый щит,
  • 5 - пакет ротора,
  • 6 - сердечник статора,
  • 7 - корпус,
  • 8 - обмотка,
  • 9 - кожух вентилятора,
  • 10 - вентилятор,
  • 11 - коробка выводов.

 

 
Рис. 2, а Статор асинхронного электродвигателя 1 - сердечник, 2 - скоба, 3 - паз. Рис. 2, б Ротор короткозамкнутый   Рис. 3 Короткозамкнутая обмотка ротора асинхронного электродвигателя

 

Каждая обмотка-фаза электродвигателя переменного тока имеет маркировку, приведенную ниже.

49) Принцип действия АД

Принцип действия асинхронного электродвигателя основан на взаимодействии индуктированного тока ротора с магнитным потоком статора. При включении обмотки трехфазного двигателя под напряжение источника трехфазного переменного тока внутри расточки статора образуется вращающееся магнитное поле, частота вращения которого равна

n1 = 60fp,

где n1 - частота вращения магнитного поля, об/мин; f - частота тока, Гц; p - число пар магнитных полюсов двигателя.

Силовые линии вращающегося магнитного поля пересекают стержни короткозамкнутой обмотки ротора, и в них индуктируется ЭДС, которая вызывает появление тока и магнитного потока в роторе двигателя.

Взаимодействие магнитного поля статора с магнитным потоком ротора создает механический вращающий момент, под действием которого ротор начинает вращаться. Частота вращения ротора несколько меньше частоты вращения магнитного поля. Поэтому двигатель называется асинхронным.

Величина, характеризующая отставание ротора от магнитного поля в относительных единицах, называется скольжением, подсчитывают ее по формуле

S = (n1−n2)/n1,

где S - скольжение (относительная угловая скорость); n1 - частота вращения магнитного поля, об/мин; n2 - номинальная частота вращения ротора, об/мин.

Для включения двигателя в сеть его статорные обмотки должны быть соединены в "звезду" или "треугольник".

Рис. 4 Схемы соединения: а - треугольник, б - звезда.

Для включения двигателя по схеме «треугольник» нужно начало первой обмотки соединить с концом второй, начало второй обмотки - с концом третьей и начало третьей - с концом первой. Места соединения обмоток подключают к трем фазам сети (рис. 4, а).

Чтобы двигатель включить в сеть по схеме «звезда», нужно все концы обмоток соединить электрически в одну точку, а все начала обмоток присоединить к фазам сети (рис. 4, б).

Схемы включения всегда приводятся на обратной стороне крышки, закрывающей коробку выводов электродвигателя.

Для изменения направления вращения трехфазного асинхронного электродвигателя достаточно поменять местами две любых фазы сети независимо от схемы включения электродвигателя. Для быстрого изменения направления вращения двигателя применяют реверсивные рубильники, пакетные выключатели или реверсивные магнитные пускатели.

Трехфазный асинхронный электродвигатель с короткозамкнутым ротором наряду с простотой конструкции, высокой надежностью в работе, долговечностью, низкой стоимостью и универсальностью, обладает одним существенным недостатком: при его пуске возникает пусковой ток, значение которого в 5-7 раз больше номинального. Большой пусковой ток, на который электрическая сеть обычно не рассчитана, вызывает значительное снижение напряжения, что, в свою очередь, отрицательно влияет на устойчивую работу соседних электроприемников.

Чтобы уменьшить пусковые токи трехфазных асинхронных короткозамкнутых двигателей больших мощностей, их включают с помощью переключателя схем со "звезды" на "треугольник". При этом сначала обмотки двигателя соединяются по схеме "звезда", потом, после того как ротор двигателя наберет номинальную частоту вращения, его обмотки переключаются в схему "треугольник".

Снижение пускового тока двигателя при переключении его обмоток со звезды на треугольник происходит потому, что вместо предназначенной для данного напряжения сети схемы "треугольник" каждая обмотка двигателя включается на напряжение в √3 раз меньшее, а потребляемый ток снижается в три раза. Снижается также в три раза и мощность, развиваемая электродвигателем при пуске. Поэтому изложенный способ снижения пускового тока можно использовать лишь при нагрузке не более 1/3 номинальной.

На каждом электрическом двигателе должен быть технический паспорт в виде металлической пластинки, укрепленной на его корпусе. В паспорте трехфазного асинхронного электродвигателя приводятся его основные технические данные, тип электродвигателя, заводской номер, соответствие стандартам, номинальные: напряжение, ток, мощность, частота вращения, коэффициент мощности, коэффициент полезного действия, масса и др.

 

55) Устройство и принцип действия синхронных машин

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Устройство

Основными частями синхронной машины являются якорь и индуктор. Наиболее частым исполнением является такое исполнение, при котором якорь располагается на статоре, а на отделённом от него воздушным зазором роторе находится индуктор.

Якорь представляет собой одну или несколько обмоток переменного тока. В двигателях токи, подаваемые в якорь, создают вращающееся магнитное поле, которое сцепляется с полем индуктора, и таким образом происходит преобразование энергии. Поле якоря оказывает воздействие на поле индуктора и называется поэтому также полем реакции якоря. В генераторах поле реакции якоря создаётся переменными токами, индуцируемыми в обмотке якоря от индуктора.

Индуктор состоит из полюсов — электромагнитов постоянного тока[1] или постоянных магнитов (в микромашинах). Индукторы синхронных машин имеют две различные конструкции: явнополюсную или неявнополюсную. Явнополюсная машина отличается тем, что полюса ярко выражены и имеют конструкцию, схожую с полюсами машины постоянного тока. При неявнополюсной конструкции обмотка возбуждения укладывается в пазы сердечника индуктора, весьма похоже на обмотку роторов асинхронных машин с фазным ротором, с той лишь разницей, что между полюсами оставляется место, незаполненное проводниками (так называемый большой зуб). Неявнополюсные конструкции применяются в быстроходных машинах, чтобы уменьшить механическую нагрузку на полюса.

Для уменьшения магнитного сопротивления, то есть для улучшения прохождения магнитного потока применяются ферромагнитные сердечники ротора и статора. В основном они представляют собой шихтованную конструкцию из электротехнической стали (то есть набранную из отдельных листов). Электротехническая сталь обладает рядом интересных свойств. В том числе она имеет повышенное содержание кремния, чтобы повысить её электрическое сопротивление и уменьшить тем самым вихревые токи.

Принцип действия

Двигательный принцип

Принцип действия синхронного двигателя основан на взаимодействии вращающегося магнитного поля якоря и магнитного поля полюсов индуктора. Обычно якорь расположен на статоре, а индуктор — на роторе. В мощных двигателях в качестве полюсов используются электромагниты (ток на ротор подаётся через скользящий контакт щетка - кольцо), в маломощных — постоянные магниты. Существует обращённая конструкция двигателей, в которой якорь расположен на роторе, а индуктор — на статоре (в устаревших двигателях, а также в современных криогенных синхронных машинах, в которых в обмотках возбуждения используются сверхпроводники.)

Запуск двигателя. Двигатель требует разгона до частоты, близкой к частоте вращения магнитного поля в зазоре, прежде чем сможет работать в синхронном режиме. При такой скорости вращающееся магнитное поле якоря сцепляется с магнитными полями полюсов индуктора (если индуктор расположен на статоре, то получается, что вращающееся магнитное поле вращающегося якоря (ротора) неподвижно относительно постоянного поля индуктора (статора), если индуктор на роторе, то магнитное поле вращающихся полюсов индуктора (ротора) неподвижно относительно вращающегося магнитного поля якоря (статора)) — это явление называется «вход в синхронизм».

Для разгона обычно используется асинхронный режим, при котором обмотки индуктора замыкаются через реостат или накоротко, как в асинхронной машине, для такого режима запуска в машинах на роторе делается короткозамкнутая обмотка, которая также выполняет роль успокоительной обмотки, устраняющей "раскачивание" ротора при синхронизации. После выхода на скорость близкую к номинальной (>95%) индуктор запитывают постоянным током.

В двигателях с постоянными магнитами применяется внешний разгонный двигатель.

Часто на валу ставят небольшой генератор постоянного тока, который питает электромагниты.

Также используется частотный пуск, когда частоту тока якоря постепенно увеличивают от 0 до номинальной величины. Или наоборот, когда частоту индуктора понижают от номинальной до 0, т.е. до постоянного тока.

Частота вращения ротора [об/мин] остаётся неизменной, жёстко связанной с частотой сети [Гц] соотношением:

,

где — число пар полюсов ротора.

Синхронные двигатели при изменении возбуждения меняют импеданс с емкостного на индуктивный. Перевозбуждённые СД на холостом ходу применяют в качестве компенсаторов реактивной мощности. Синхронные двигатели в промышленности обычно применяют при единичных мощностях свыше 300 кВт, при меньших мощностях обычно применяется более простой (и надежный) асинхронный двигатель с короткозамкнутым ротором

56) Общие сведения о машинах постоянного тока и их устройство.

Машина постоянного тока — электрическая машина, предназначенная для преобразования механической энергии в электрическую постоянного тока (генератор) или для обратного преобразования (двигатель). Машина постоянного тока обратима.

Машина постоянного тока образуется из синхронной обращённой конструкции, если её якорь снабдить коллектором, который в генераторном режиме играет роль выпрямителя, а в двигательном — преобразователя частоты. Благодаря наличию коллектора по обмотке якоря проходит переменный ток, а во внешней цепи, связанной с якорем, — постоянный.

Различают следующие виды машин постоянного тока:

  • по наличию коммутации:
    • с коммутацией (обычные);
    • без коммутации (униполярный генератор и униполярный электродвигатель);
  • по типу переключателей тока:
    • с коллекторными переключателями тока (с щёточно-коллекторным переключателем);
    • с бесколлекторными переключателями тока (с электронным переключателем (вентильный электродвигатель)).
  • по мощности:
    • микромашины — до 500Вт;
    • малой мощности — 0,5-10 кВт;
    • средней мощности — 10-200 кВт;
    • большой мощности — более 200 кВт.
  • в зависимости от частоты вращения:
    • тихоходные — до 300 об./мин.;
    • средней быстроходности — 300—1500 об./мин.;
    • быстроходные — 1500-6000 об./мин.;
    • сверхбыстроходные — более 6000 об./мин.
  • по расположению вала:
    • горизонтальные;
    • вертикальные.

57) Принцип действия МПТ

Машина постоянного тока может работать в двух режимах: двигательном и генераторном, в зависимости от того, какую энергию к ней подвести — если электрическую, то электрическая машина будет работать в режиме электродвигателя, а если механическую — то будет работать в режиме генератора. Однако электрические машины, как правило предназначены, заводом изготовителем, для одного определенного режима работы — или в режиме генератора, или электродвигателя.

Электродвигатель

Электродвигатели постоянного тока стоят почти на каждом автомобиле, это стартер, электропривод стеклоочистителя, вентилятор «печки» и др.

В роли индуктора выступает статор, на котором расположена обмотка. На неё подаётся постоянный ток, в результате чего вокруг неё создаётся постоянное магнитное поле. Обмотка ротора состоит из проводников, запитанных через коллектор. В результате на них действуют пары сил Ампера, которые вызывают вращающий момент. Направление сил определяется по правилу «буравчика». Однако этот вращающий момент способен повернуть ротор только на 180 градусов, после чего он остановится. Чтобы это предотвратить, используется щёточно-коллекторный узел, выполняющий роль переключателя полюсов и датчика положения ротора (ДПР).

Генератор

В генераторе индуктором также является статор, создающий постоянное магнитное поле между соответствующими полюсами. При вращении ротора, в проводниках обмотки якоря, перемещающихся в магнитном поле, по закону электромагнитной индукции наводится ЭДС, направление которой определяется по правилу правой руки. Переменная ЭДС обмотки якоря выпрямляется с помощью коллектора, через неподвижные щетки, посредством которых обмотка соединяется с внешней сетью.

Автомобильный генератор представляет собой генератор переменного трёхфазного тока с трёхфазным выпрямителем на шести диодах по схеме академика Ларионова

58) ГПТ и их классификация

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...