Уровня СМФП в области левой (s.) и правой (d.) миндалин (Amygd.) в период 14 глава
повод к «закрытию проблемы». Исследования нейрофизиологических механизмов мыслительной деятельности, несомненно, целесообразно продолжить, чтобы шаг за шагом получать все более полные характеристики вклада различных мозговых зон коры и глубоких структур мозга в обеспечение мыслительной деятельности. Одновременно важно дальнейшее выяснение механизмов мозга, их общего и частного значения. Мы очень ждем от работающих вместе с нами представителей точных наук методов исследования, все более адекватных тому, как мозг взрослого человека решает простые, сложные и сложнейшие задачи. Надо также надеяться, что в самом ближайшем будущем изучение местных и системных процессов в мозгу человека сольется в единое целое. Вместе с психологами физиологи должны попытаться понять мозговые механизмы не только мыслительной деятельности, обеспечивающей ежедневную жизнь человека, но и тех процессов, которые служат прорыву в неизвестное, то есть механизмы творчества. Однако какими бы интригующими ни были результаты будущего, они не явятся поводом для третьего издания данной книги. В задачи книги входило наряду с детализацией ряда данных прежде всего изложение общих подходов к изучению здорового и больного мозга и общих принципов его работы. Глава шестая Нейрофизиология памяти человека и общие механизмы его мозга И все это может сделать одна только физиология, так как она одна держит в своих руках ключ к истинно научному анализу психических явлений. И. М. Сеченов Давно и широким фронтом ведется настойчивое многоплановое изучение проблемы памяти. Опыт показал, что достаточно полноценная расшифровка ее механизмов возможна лишь на основе интегративного подхода, но это не исключает отдельных, разных по значимости аналитических этапов ее изучения.
Физиологическое изучение памяти базируется главным образом на исследовании тех изменений различных физиологических показателей в мозгу, которые происходят в ходе запоминания (обучения), динамики следовых явлений и отражения процесса считывания из долгосрочной памяти. Ценные данные о механизмах памяти у человека были получены, как известно, при клинико-анатомических сопоставлениях (Бехтерев, 1900, и многие другие), в процессе развития нейропсихологии (Лурия, 1977; Хомская, 1977) и при анализе результатов электрических воздействий на кору и различные глубокие образования мозга (Ojemann, 1978a; Смирнов, 1976). Физиологический аспект проблемы широко разрабатывается в экспериментальных исследованиях различных лабораторий, результаты которых обобщены в монографиях и сборниках (Talland, 1965; John, 1967; Механизмы модуляции памяти, 1976; Механизмы управления памятью, 1979; Вартанян, Пирогов, 1987; Механизмы памяти, 1987, и др.). Стройная биоэлектрическая гипотеза памяти предложена М. Н. Ливановым (1977). Данные о физиологических коррелятах памяти получены не только в эксперименте на животных, ной в исследованиях, проводимых у человека (Гречин, 1975; Раева, Ливанов, 1975; Кропотов, Гречин, 1976; John, 1977; Кропотов, 1979а, и др.). Интерес к проблеме памяти все возрастает. При этом совершенствование методики исследований, формулирование и разработка новых концепций о механизмах мозга будут способствовать изучению процессов памяти. Широкие запросы педагогики и клиники остро ставят задачу изыскания путей управления процессом памяти, его различными свойствами. Поток обрушивающихся на человека сведений все увеличивается, поэтому возникла необходимость создать способы запоминания иногда очень большого количества сведений одновременно. И. М. Сеченов писал: «Память - сила, которая лежит в основе всего психического развития. Не будь в самом деле этой силы психическое развитие было бы невозможностью» (Сеченов, 1952а, с. 99).
Изыскивая предпосылки для улучшения запоминания, надо одновременно искать и противоядие - способы улучшения выделения значимости информации (эта задача в общем виде рассматривается техническими специалистами как проблема сигнал - шум), а также пути дезактивации, если не полного «стирания» памяти. Одновременная постановка этих задач важна и для обучения здорового мозга, и для переобучения мозга больного человека путем коррекции матрицы памяти, поддерживающей устойчивое патологическое состояние. Обнаружение и исследование динамики физиологических изменений в различные фазы памяти оказываются возможными потому, что процесс запоминания в ходе обучения чаще всего происходит не мгновенно, а имеет развертку во времени. В то же время литературные данные и наблюдавшиеся нами при электрической стимуляции мозга явления типа импринтинга (запечатления) свидетельствуют о том, что мгновенное запоминание, запечатление возможно не только на самых ранних этапах онтогенеза (Бехтерева, Смирнов, 1975). Биологически, по-видимому, для организма выгодно иметь разные формы памяти. Реализация основных, важнейших для сохранения вида процессов организма и человека, и животных определяется генетической памятью, не развивающейся, а скорее проявляющейся в онтогенезе. Индивидуально приобретенная память определяет лишь адекватные коррекции протекающих процессов. Для осуществления функций, важнейших для сохранения индивида как представителя вида, используется механизм мгновенной памяти - запечатление. И, наконец, все другие виды деятельности, определяющие жизнь индивида в меняющейся среде и особенно жизнь человека в специально человеческой среде, базируются на более или менее быстро, но, как правило, не мгновенно формирующейся памяти. Скорость ее формирования является функцией значимости события и, таким образом, соответствующей мотивации. Она зависит от эмоционально активных или эмоционально нейтральных активационных механизмов и, следовательно, от функционального фона мозга. Этот процесс связан с генетическими особенностями мозга и целым рядом других, не всегда легко учитываемых факторов.
Биологической выгодой не мгновенного запоминания в процессе обучения является, по-видимому, возможность «отбора на запись», фильтрации информации и, что очень важно, одновременно идущего ее упорядочивания. В случае психонервной памяти примером упорядочивания является соотнесение ее с различными смысловыми и другими полями со всеми вытекающими отсюда последствиями иерархии дальнейшего ассоциативного поиска. Генетически у человека имеются высокосовершенные предпосылки к психонервной памяти, реализующиеся в процессе обучения, индивидуального и особенно социально обогащенного развития. Так, не только обучение смысловому значению слов, но и использование их как важнейших единиц мыслительной деятельности осуществляется в ходе индивидуального развития человека в условиях общения с особями данного биологического вида. Именно в процессе обучения идет формирование и накопление базиса долговременной психонервной памяти при одновременной тренировке ее последующего использования в форме считывания, перевода из долгосрочной памяти в оперативную. Как указывалось выше, связь мыслительных операций с процессами памяти неразрывна. Выделение в исследованиях собственно мыслительных процессов или собственно процесса памяти всегда имеет искусственный характер и определяет скорее расстановку акцентов, чем их сущность. Действительно, уже простейшие умозаключения немыслимы без активации и использования соответствующего базиса долгосрочной памяти вербального и невербального типов. В то же самое время по ходу тех же и всех других процессов все время происходит не только пополнение базиса памяти, но и трансформация ассоциаций и их иерархии. В полном соответствии со сказанным данные, полученные в процессе изучения тонких нейрофизиологических коррелятов слов и мыслительных процессов (Бехтерева и др., 1977а), оказались существенными для понимания целого ряда закономерностей нейропсихологии, нейролингвистики, физиологии анализаторных систем, искусственного интеллекта и ряда других направлений научных исследований. Они вместе с данными электрических воздействий на мозг оказались важнейшими для комплексно решаемой научной проблемы - проблемы памяти.
В предыдущей главе рассматривались результаты исследования перестроек импульсной активности, соотносимых с восприятием, удержанием в памяти и воспроизведением слов и некоторыми мыслительными операциями. Было показано, что в процессе восприятия слов в импульсной активности нейронных популяций формируется паттерн, характеризующийся изменениями частоты и структуры импульсного потока, формы разрядов нейронов и их групп внутри нейронных популяций и между дистантно расположенными популяциями. Уже в этом паттерне при использовании в психологических тестах слов, имеющих смысловую общность, обнаруживались нейрофизиологические корреляты этой общности в виде характерных перестроек взаимодействия нейронных группировок. Далее были выявлены перестройки структуры импульсного потока в виде очень динамичных определенных последовательностей интервалов и мало динамичных, но менее определенных изменений интервалов между импульсами. Общие перестройки структуры импульсных потоков, появляющиеся в разных зонах мозга (см. выше), рассматривались нами как фактор, способствующий организации мозговой системы. Общие последовательности интервалов, обнаруженные в коррелятах слов, соотносимых по смыслу, отражали переведенный из латентной формы в активную системообразующий фактор долгосрочной памяти. Они явились биоэлектрическим выражением активации ассоциативных связей, образовавшихся в результате индивидуального опыта и хранимых в долгосрочной памяти. При инструкции запомнить слово и произнести его по команде и относительно небольших изменениях интервала между заданием и ответом можно видеть настраивание мозга на тот интервал в форме появления вначале слабо выраженных, а затем вполне отчетливых перестроек импульсной активности в виде появления паттерна сигнала, являющегося «оригинальной копией» первого развернутого паттерна, названного управляющим (Бехтерева и др., 19756). Термин «оригинальная копия» заимствован из искусства. Если он и не очень удачен, то отражает и сходство управляющего паттерна с первым, возникшим при восприятии слова, и отличие от него. Отличие формально характеризуется его соотносимостью с акустическими (а вероятно, и моторными) характеристиками ответа больного. По существу, различие определяется тем, что второй паттерн в тестах с предъявлениями известных слов является результатом активации долгосрочной памяти лица, выполняющего тест. Подчеркивание в этих случаях значения активации долгосрочной памяти основано на сопоставлении нейрофизиологической динамики в тестах на краткосрочную память с динамикой при выполнении мыслительных операций. Если в первом случае соотношения относительно просты: полный первичный паттерн-компрессированный паттерн (паттерны)-полный управляющий паттерн, соотносимые с одним и тем же словом, то при различных входном и выходном сигналах, где входной является лишь одной из детерминант выходного - ответа, видно, как мозг формирует ответ при наличии соответствующего базиса долгосрочной памяти. Влияние последнего на динамику паттерна-кода в импульсной активности нейронных популяций прослеживается при варьировании наиболее простых тестов - тестов на краткосрочную память. При этом обнаруживается, что выполнение тестов, формально составленных одинаково, но с использованием слов, встречающихся в речи с разной частотой, известных и неизвестных, может осуществляться на различной нейрофизиологической основе.
Действительно, и при предъявлении редко и часто встречающихся в речи известных слов, и при предъявлении неизвестных слов по команде «Повторите» корректно или ошибочно воспроизводится то, что было в задании. Однако после восприятия известных слов наблюдается указанная выше нейрофизиологическая динамика, а при удержании в памяти неизвестного слова возникший при его восприятии паттерн сохраняется в импульсной активности, хотя и в дискретной форме, до речевого ответа. Сохранение паттерна связано в данных конкретных тестах и с тем, что больному предлагалось запомнить предъявленные сигналы. Однако идентичность этого условия при различии характера предъявляемых сигналов и соответственно этому различие мозговой нейродинамики позволили нам предположить, что второй вариант (сохранение паттерна) связан с отсутствием тормозящих влияний базиса долгосрочной памяти при неопознании субъективно нового сигнала. Нейрофизиологическим механизмом стабильности паттерна могут быть явления, протекающие по типу не до конца еще прослеженного и изученного процесса так называемой реверберации (Lorente de No, 1938; Беритов, 1960). Отношение циркуляции возбуждения по замкнутым нейронным цепочкам, спустя некоторое время после окончания действия какого-либо стимула к процессу краткосрочной памяти, недавно получило прямое экспериментальное доказательство на животных при исследовании взаимодействий функционально связанных нейронов (Вартанян и др., 1986). Стабильность, сохранение паттерна создают предпосылки к оптимизации в этих условиях формирования соответствующего биохимического базиса долгосрочной памяти. Это объяснение почти напрашивается, и мы пока не можем предложить лучшего, хотя, естественно, можно было бы предположить, что дело не в отсутствии тормозящих влияний, а в самом факторе новизны, активации соответствующих детекторов. Но что такое, если вдуматься в физиологическую сторону вопроса, новизна? Зависимость обнаруженных во время удержания теста нейродинамических явлений от базиса долгосрочной памяти подтверждается не только различием их при разной степени субъективной новизны задания. Подтверждением является также и перестройка второго варианта нейродинамики на первый при обучении обследуемого лица значению ранее неизвестных иностранных слов. Тогда, когда звучание слова становится привычным, а значение - известным, тогда, когда можно думать, что соответствующий базис долгосрочной памяти сформировался, паттерн начинает исчезать из долгосрочной памяти так же, как это наблюдается при предъявлении известных слов. Данные, сопоставимые с этими нашими наблюдениями, уже встречаются в литературе. Об отражении в электрических явлениях мозга предыдущего опыта, считываемого из долгосрочной памяти, пишут Джон (John, 1976), В. А. Илюхина (1977) и другие авторы. Это неудивительно, так как не только в реальных жизненных условиях, ноив специально ориентированных физиологических экспериментах четко прослеживается влияние долгосрочной памяти на поведение, оценку внешних сигналов (Фирсов, 1977; Чораян, 1978, и многие другие). Анализ составляющих паттернов-кодов и выделение динамичных групповых последовательностей разрядов с определенными интервалами позволили получить в тестах на обобщение новые, более детальные данные об отражении в импульсной активности нейронных популяций процесса активации долгосрочной памяти. После восприятия первых двух-трех слов одного смыслового поля в импульсной активности нейронных популяций появляется сложный фрагмент паттерна, в который входят и групповые последовательности разрядов, характерные для уже предъявленных слов, и новые элементы, позднее обнаруживаемые в паттерне-коде обобщающего слова (Гоголицын, 19766). Этот феномен рассматривается как отражение уже происшедшего, хотя, возможно, и не окончательного («может быть»?) обобщения по минимуму слов смыслового поля. В плане рассматриваемой проблемы памяти он свидетельствует об извлечении обобщающего слова (естественно, в данном случае - активации его биоэлектрического паттерна) из долгосрочной памяти. На примере процесса формирования паттерна-кода обобщения еще раз подчеркивается значение биоэлектрического компонента паттерна. Слово-обобщение («мебель», «деревья», «цветы» ит. д.) В заданиях отсутствовало. Оно проявляется как результат активации соответствующей матрицы долгосрочной памяти. При этом оказывается, что в биоэлектрическое отражение активации этой матрицы долгосрочной памяти включены элементарные составляющие биоэлектрических паттернов-кодов слов, образующих смысловое ноле. Паттерн-код обобщающего слова воспроизводит отдельные элементы паттерна-кода обобщаемых слов в сочетании со своим, специфическим, паттерном. Это может рассматриваться как нейрофизиологическое свидетельство правомочности представления, что обобщение не есть простая выборка значимых элементов паттернов обобщаемых слов и их суммация, а есть появление нового качества. Предъявление зрительного изображения (первая детерминация ассоциативного поиска), сопровождаемое определенным словесным заданием (вторая детерминация - ограничение ассоциативного поиска), привело, как указывалось в наших предыдущих исследованиях (Бехтерева и др., 1977а), к появлению в импульсной активности целого ряда различных паттернов-кодов слов, имеющих видовую и индивидуальную смысловую связь с детерминированным изображением и заданным мыслительным процессом. Продолжение на новом уровне этих исследований, на время приостановленных в пользу получения статистически достоверных результатов, даст возможность, по-видимому, представить объективные свидетельства характера и результатов ассоциативного поиска в процессе интеллектуально-мнестической деятельности, а также выявить, как, на основе какого количества и рода информации, переведенной из потенциальной формы в активную, из долгосрочной памяти в оперативную, принимается то или иное решение. Такие исследования с учетом приведенных в предыдущей главе ограничений, и прежде всего динамичности, неустойчивости паттернов и их элементов перспективны для понимания механизмов и нейрофизиологической основы сложнейших нарушений психических функций. Важно подчеркнуть, что уже первые результаты этих исследований оказались интересными для развития проблемы памяти. В этом случае, так же как и в тестах на краткосрочную память, обнаруживались и развернутые, и компрессированные паттерны. В развернутой форме появлялись паттерны-коды, связанные с вербализацией задания и ответа. Подавляющее большинство паттернов- кодов остальных слов выявлялось в компрессированной форме. Эти данные рассматривались нами выше в плане оценки условий осуществления мыслительных операций. Если взглянуть на них в аспекте проблемы памяти, придется допустить, что, по крайней мере, большой массив вербальной памяти хранится именно в экономичной, компрессированной, а возможно, и в связанной, комплексной форме. Появление развернутых паттернов-кодов в форме управляющих паттернов-кодов при восприятии слов в тестах на краткосрочную память дает основание думать, что развернутый сигнал и механизм развертки теснейшим образом связаны с опознанием сигнала и вербализацией ответа. В более общей форме можно думать, что механизм развертки является важнейшим в процессе обучения, а механизм компрессии - в развитии мыслительной деятельности. Так же как и компрессия паттерна, развертка для формирования ответа не может осуществляться без участия информационноспецифической долгосрочной памяти. И вто же время не исключено, что реализации развертки могут принимать участие и другие, менее пецифичные механизмы мозга. Не участвуют ли в процессах компрессии и развертки паттерна эмоционально активные и эмоционально нейтральные активирующие и тормозные влияния, значение которых и в мыслительных процессах, и в механизмах памяти хотя и общеизвестно, но далеко еще не понято? Развитие эмоционально активной или эмоционально нейтральной реакции активации или торможения в нейронных популяциях прежде всего влияет на текущую частоту разрядов. Исследования в этом направлении проводятся. Возможно, что они могут привести к переоценке физиологической природы компрессированных паттернов. До сих пор компрессированные паттерны по-прежнему (с 1971 года) рассматриваются как редуцированная форма развернутых, сохраняющая их опорные элементы. Не отрицая такой точки зрения, стоит рассмотреть вопрос, не являются ли компрессированные паттерны хотя бы частично результатом истинной компрессии элементов паттерна, чем-то вроде отражения компрессии шкалы времени. Как известно, вопрос о возможности жизни мозга по разному времени ставился в наших предыдущих исследованиях (Бехтерева, 1971, 1974, 1978). Оннаходиттакжеподтверждения в психологических исследованиях (Брехман, 1976). Однако, как вполне понятно, для рассмотрения конкретных вышеприведенных данных в таком аспекте оснований пока еще недостаточно. Результаты изучения кодирования мыслительных процессов дают все основания предполагать наличие в глубоких структурах мозга не только энергетических, но и информационноспецифических звеньев системы обеспечения психической деятельности. Однако сила традиционных представлений в науке о мозге человека обусловила первоначально объяснение нейрофизиологических явлений, наблюдавшихся местно в подкорке, как отражение событий на корковом уровне. Так, предполагалось, что где бы в мозгу ни возникал характерный биоэлектрический кодовый паттерн, адресом долгосрочной памяти была кора больших полушарий (Бехтерева, 1974). Надо сказать, аналогичная трактовка явлений, развивающихся на подкорковом уровне при психической деятельности, и сейчас еще очень распространена, хотя, как показано в предыдущей главе, накапливается все больше данных в пользу роли по крайней мере ряда подкорковых структур в процессах высшей интегративной деятельности. Изучение вопроса заставило нас отказаться от этой предвзятости и вносить коррекции в гипотезу о пространственных соотношениях интеллектуальных процессов с их базисом - долгосрочной памятью. Далее эти представления были нами развиты в форме гипотезы о распределенном кодировании вербальных сигналов. Нейрофизиологическим выражением этого распределенного кодирования было наличие преимущественно различных групповых и лишь отдельных высокосходных последовательностей разрядов в различных зонах мозга. По-видимому, даже при исключении избыточности местных элементов паттерна- кода полный мозговой паттерн-код слова представляет собой интегральную величину, результирующую паттернов-кодов в различных звеньях системы обеспечения психической деятельности. Здесь важно подчеркнуть: слова «интегральная» и «результирующая» отражают сегодняшнее знание того, что полный код не есть простая сумма паттернов-кодов в различных нейронных популяциях и одновременно неполное понимание нейрофизиологических процессов, протекающих при объединении не трех, четырех, пяти, а многих звеньев систем. Выше уже рассматривались предположительные варианты структурно-функциональной организации мозга в этом случае. Нейрофизиологические исследования показывают, что количество звеньев системы очень велико, особенно с учетом наличия в ней не только жестких, обязательных, но и гибких звеньев. Это положение подтверждается практически в каждом нейрофизиологическом исследовании мозга человека при использовании самых разных показателей жизнедеятельности мозга (Кропотов, Гречин, 1976; Кропотов, Малышев, 1976; Методы клинической нейрофизиологии, 1977; Кропотов, 1979а; Медведев, Белов, 1986, и др.). Так, воспроизводимые изменения при пробах на оперативную память наблюдались В. Б. Гречиным в 72 % точек мозга из общего числа 1000 обследованных зон в пределах премоторной коры, ядер таламуса и стриопаллидарной системы и верхних отделов ствола. При этом до 18 % обследованных зон обнаружили в большей или меньшей степени свойства детекции ошибки (зоны в хвостатом ядре, срединном центре, подушке, переднем и латеральных ядрах таламуса и др.). Выше показано, что в исследованиях, проведенных Ю. Д. Кропотовым и сотрудниками (Бехтерева и др., 19856), данные о детекции ошибок получили полное подтверждение и дальнейшее развитие. Паттерн-код, индивидуальный в каждой нейронной популяции, огромное количество звеньев системы, казалось бы, создают свой неповторимый мозговой код у каждого обследуемого лица, что формально согласуется с данными психологии об индивидуальных психологических различиях разных лиц. И не только психологии. Электрическая стимуляция мозга человека обнаруживает также много индивидуального в его организации и особенно в том, что касается высших функций (Ojemann, 1979). Однако калейдоскоп групповых последовательностей разрядов в нейронных популяциях состоит из кодовых элементарных последовательностей, общие элементы которых обнаруживаются (по-видимому, играя роль системообразующего фактора) в разных нейронных популяциях в паттернах одного слова и в одной и той же популяции в паттернах-кодах слов со смысловой общностью. Следует здесь еще раз подчеркнуть уже упоминавшиеся выше данные Н. Г. Шкуриной (1983, 1984) о возможности наблюдения не только динамичных, но и сравнительно стабильных перестроек структуры импульсного потока, хотя и о значительно меньшей определенностью конкретных интервалов между импульсными разрядами нейронов. Исследования механизмов и нейрофизиологических коррелятов общности явлений в разных звеньях мозговой системы, дальнейший анализ и систематизация кодовых паттернов будут, по-видимому, способствовать выяснению видовых характеристик (принципов!) отражения словесных сигналов в мозгу разных людей. Приведение этих данных в настоящей главе было необходимо для анализа или, точнее, пересмотра представлений о месте и способе хранения информации в долгосрочной памяти, о локализации так называемых энграмм памяти. Распределенность кода при значимости его элементов, обнаруженных, в частности, в подкорковых нейронных популяциях, позволяет выдвинуть гипотезу о распределенном характере матрицы долгосрочной вербальной памяти и о значении подкорковых образований для распределенного хранения. Исследуя форму нейронных разрядов при проведении тестов на краткосрочную память с предъявлением часто и редко встречающихся в речи известных слов и незначимых триграмм, П. В. Бундзен (Бехтерева и др., 1973) показал зависимую от степени известности слова и таким образом от базиса долгосрочной памяти динамику стабилизировавшихся по форме разрядов. Стабилизация по форме была кратковременной и появлялась при восприятии слова и его воспроизведении в случае предъявления часто встречающихся в речи известных слов, обнаруживалась более продолжительно в импульсной активности при предъявлении редко встречающихся известных слов и наблюдалась на протяжении всего удержания в памяти, причем с тенденцией распространения по пространству (популяции). На основе экспериментальныхисследований (Rosenthal, 1967; Ходоров, 1969; Machek, Pavlik, 1973; Вислобоков, 1974) можно предположить, что это явление отражает определенное состояние мембран нервных клеток, предположительно соотносимое с процессами, лежащими в основе активации или формирования базиса долгосрочной памяти. Обнаружение этих явлений в подкорковых структурах подтверждает вероятность представлений о распределенном, не только корковом, но и подкорковом расположении (хранении) матриц долгосрочной памяти. Если позволить себе некоторое отступление и вспомнить статью Лешли «В поисках энграмм» (Lashley, 1966), то, вероятно, именно распределенностью памяти хотя бы частично можно объяснить сложности, которые встречались и будут встречаться на пути поиска энграмм. Нет оснований представлять себе память структурно отделенной от деятельности, хотя опыт клиникофизиолого-анатомических сопоставлений и показывает особую значимость ряда образований мозга для нормального протекания процессов памяти. Если стоять на позициях распределенного хранения долгосрочной памяти, можно рассмотреть под определенным углом зрения затянувшиеся споры об уровнях замыкания условного рефлекса и об идентичности, и, наоборот, о различиях понятий «условный рефлекс» и «временна^ я связь». Формирование условного рефлекса основано на формировании соответствующего базиса долгосрочной памяти. С другой стороны, условный рефлекс есть форма выражения долгосрочной памяти. Долгосрочная память, не имеющая, повидимому, строго определенного уровня формирования и хранения, а являющаяся функцией очень многих пространственно распределенных нервных клеток, и определяет нередко удивлявшую экспериментаторов возможность формирования пусть не классического условного рефлекса, а временно^ й связи при филогенетическом или хирургически детерминированном неучастии высших отделов мозга. С другой стороны, условный рефлекс, формирующийся у высших животных и у человека, протекающий при участии коры больших полушарий, нельзя себе представлять как процесс, где матрица памяти, ответственная за замыкание условной связи, имеет строго определенный, только корковый уровень. Даже самый простой условный рефлекс, затрагивая по ходу предъявления индифферентного (условного!) и безусловного сигналов разные уровни мозга, оставляет в них иногда, по-видимому, неизгладимые следы. Этих следов при длительном повторении одного и того же условного рефлекса может становиться меньше за счет процесса оптимальной минимизации системы, обеспечивающего деятельность и находящегося в известной мере в конкурентных отношениях с процессом распределения (не распределенности!) хранения памяти. Это приводит к тому, что даже для тех организмов, для которых задаваемая условно-рефлекторная деятельность является адекватной по сложности, любой условно-рефлекторный процесс при упрочивании начинает базироваться на распределенной, но оптимально минимизированной матрице памяти. Переходящие из статьи в статью, из монографии в монографию данные Пенфильда о возможности наблюдать развернутые картины прошлого опыта при электрической стимуляции некоторых зон коры и глубоких отделов височных долей мозга, позволившие ему выдвинуть представления о коре и этих зонах, в частности, как о хранилище прошлого опыта и соответственно - о более глубоком структурном уровне высшей интегративной деятельности в мозгу, тоже, по-видимому, могут быть рассмотрены и с иных позиций. Если матрица долгосрочной памяти распределена, то при стимуляции коры и других зон эпилептического мозга, характеризующегося в определенные фазы болезни сочетанием исключительной проводимости и разных по локализации доминантных эпилептогенных очагов, могла быть активирована вся матрица, в которой хранилась память этого прошлого опыта, где бы ни находились ее звенья, по принципу, аналогичному ассоциативному поиску при мыслительных операциях.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|