Главная | Обратная связь
МегаЛекции

Конструкция паровой турбины





Конструктивно современная паровая турбина (рис. 3.4) состоит из одного или нескольких цилиндров, в которых происходит процесс преобразования энергии пара, и ряда устройств, обеспечивающих организацию ее рабочего процесса.

Цилиндр. Основным узлом паровой турбины, в котором внутренняя энергия пара превращается в кинетическую энергию парового потока и далее – в механическую энергию ротора, является цилиндр. Он состоит из неподвижного корпуса (статоратурбины из двух частей, разделенных по горизонтальному разъему; направляющих (сопловых) лопаток, лабиринтовых уплотнений, впускного и выхлопного патрубков, опор подшипников и др.) и вращающегося в этом корпусе ротора (вал, диски, рабочие лопатки и др.). Основная задача сопловых лопаток – превратить потенциальную энергию пара, расширяющегося в сопловых решетках с уменьшением давления и одновременным снижением температуры, в кинетическую энергию организованного парового потока и направить его в рабочие лопатки ротора. Основное назначение рабочих лопаток и ротора турбины – преобразовать кинетическую энергию парового потока в механическую энергию вращающегося ротора, которая в свою очередь преобразуется в генераторе в электрическую энергию. Ротор мощной паровой турбины представлен на рисунке 3.5.

Число венцов сопловых лопаток в каждом цилиндре паровой турбины равно числу венцов рабочих лопаток соответствующего ротора. В современных мощных паровых турбинах различают цилиндры низкого, среднего, высокого и сверхвысокого давления (рис. 3.6.). Обычно цилиндром сверхвысокого давления именуется цилиндр, давление пара на входе в который превосходит 30,0 МПа, цилиндром высокого давления – участок турбины, давление пара на входе в который колеблется в пределах 23,5 – 9,0 МПа, цилиндром среднего давления – участок турбины, давление пара на входе в который около 3,0 МПа, цилиндром низкого давления – участок, давление пара на входе в который не превышает 0,2 МПа. В современных мощных турбоагрегатах число цилиндров низкого давления может достигать 4 с целью обеспечения приемлемой по условиям прочности длины рабочих лопаток последних ступеней турбины.



Органы парораспределения. Количество пара, поступающего в цилиндр турбины, ограничивается открытием клапанов, которые вместе с регулирующей ступенью называются органами парораспределения. В практике турбиностроения различают два типа парораспределения – дроссельное и сопловое. Дроссельное парораспределение предусматривает подвод пара после открытия клапана равномерно по всей окружности венца сопловых лопаток. Это означает, что функцию изменения расхода выполняет кольцевая щель между клапаном, который перемещается, и его седлом, которое установлено неподвижно. Процесс изменения расхода в этой конструкции связан с дросселированием. Чем меньше открыт клапан, тем больше потери давления пара от дросселирования и тем меньше его расход на цилиндр.

Рис. 3.4. Внешний вид паровой турбины К-300-240

Рис. 3.5. Ротор паровой турбины мощностью 220 МВт

Сопловое парораспределение предусматривает секционирование направляющих лопаток по окружности на несколько сегментов (групп сопел), к каждому из которых организован отдельный подвод пара, оснащенный своим клапаном, который либо закрыт, либо полностью открыт. При открытом клапане потери давления на нем минимальны, а расход пара пропорционален доле окружности, через которую этот пар поступает в турбину. Таким образом, при сопловом парораспределении процесс дросселирования отсутствует, а потери давления сводятся к минимуму.

В случае высокого и сверхвысокого начального давления в системе паровпуска применяются так называемые разгрузочные устройства, которые предназначены для уменьшения начального перепада давления на клапане и снижения усилия, которое необходимо приложить к клапану при его открытии.

В некоторых случаях дросселирование называют еще качественным регулированием расхода пара на турбину, а сопловое парораспределение – количественным.

Система регулирования. Эта система позволяет осуществлять синхронизацию турбогенератора с сетью, устанавливать заданную нагрузку при работе в общую сеть, обеспечивать перевод турбины на холостой ход при сбросе электрической нагрузки. Принципиальная схема системы непрямого регулирования с центробежным регулятором скорости представлена на рисунке 3.7.

С ростом частоты вращения ротора турбины и муфты регулятора центробежная сила грузов увеличивается, муфта регулятора скорости1поднимается, сжимая пружину регулятора и поворачивая рычаг АВ вокруг точки В. Соединенный с рычагом в точке С золотник2смещается из среднего положения вверх и сообщает верхнюю полость гидравлического сервомотора3с напорной линией4через окноa, а нижнюю – со сливной линией5через окноb. Под воздействием перепада давлений поршень сервомотора перемещается вниз, прикрывая регулирующий клапан6и уменьшая пропуск пара в турбину7, что и обусловит снижение частоты вращения ротора. Одновременно со смещением штока сервомотора рычаг АВ поворачивается относительно точки А, смещая золотник вниз и прекращая подачу жидкости в сервомотор. Золотник возвращается в среднее положение, чем стабилизируется переходный процесс при новой (уменьшенной) частоте вращения ротора. Если увеличивается нагрузка турбины и частота вращения ротора падает, то элементы регулятора смещаются в противоположном рассмотренному направлении и процесс регулирования протекает аналогично, но с увеличением пропуска пара в турбину. Это приводит к росту скорости вращения ротора и восстановлению частоты генерируемого тока.

Системы регулирования паровых турбин, применяемых, например, на АЭС, в качестве рабочей жидкости используют, как правило, турбинное масло. Отличительной особенностью систем регулирования турбин К-300240-2 и К-500-240-2 является применение в системе регулирования вместо турбинного масла конденсата водяного пара. На всех турбинах НПО «Турбоатом», помимо традиционных гидравлических систем регулирования, применяют электрогидравлические системы регулирования (ЭГСР) с более высоким быстродействием.

Валоповорот. В турбоагрегатах традиционно применяется «тихоходный» – несколько оборотов в минуту – валоповорот. Валоповоротное устройство предназначено для медленного вращения ротора при пуске и останове турбины для предотвращения теплового искривления ротора. Одна из конструкций валоповоротного устройства изображена на рис. 3.8. Она включает электродвигатель с червяком, входящим в зацепление с червячным колесом1, расположенным на промежуточном валике. На винтовой шпонке этого валика установлена ведущая цилиндрическая шестерня, которая при включении валоповоротного устройства входит в зацепление с ведомой цилиндрической шестерней, сидящей на валу турбины. После подачи пара в турбину частота вращения ротора растет и ведущая шестерня автоматически выходит из зацепления.

Рис. 3.6. Цилиндры высокого, среднего и низкого давления паровой турбины мощностью 300 МВт (нижняя половина)

Рис. 3.7. Принципиальная схема регулирования с однократным усилением: 1 – муфта регулятора; 2 – золотник; 3 – гидравлический сервомотор; 4 – напорная линия; 5 – сливная линия; 6 – регулирующий клапан; 7 – подача пара в турбину

Подшипники и опоры. Паротурбинные агрегаты расположены, как правило, в машинном зале электростанции горизонтально. Такое расположение обусловливает применение в турбине наряду с опорными также и упорных или опорно-упорных подшипников3(см. рис. 3.8). Для опорных подшипников наиболее распространенным в энергетике является парное их количество – на каждый ротор приходится два опорных подшипника. Для тяжелых роторов (роторов низкого давления быстроходных турбин с числом оборотов 3000 об/мин и всех без исключения роторов «тихоходных» турбин с числом оборотов 1500 об/мин) допустимо применение традиционных для энергетического турбиностроения втулочных подшипников. В таком подшипнике нижняя половина вкладыша выполняет роль несущей поверхности, а верхняя половина – роль демпфера любых возмущений, возникающих при эксплуатации. К таким возмущениям можно отнести остаточную динамическую неуравновешенность ротора, возмущения, возникающие при прохождении критических чисел оборотов, возмущения за счет переменных сил от воздействия парового потока. Сила веса тяжелых роторов, направленная вниз, в состоянии подавить, как правило, все эти возмущения, что обеспечивает спокойный ход турбины. А для относительно легких роторов (роторов высокого и среднего давления) все перечисленные возмущения могут оказаться значительными по сравнению с весом ротора, особенно в паровом потоке высокой плотности. Для подавления этих возмущений разработаны так называемые сегментные подшипники. В этих подшипниках каждый сегмент обладает повышенной по сравнению с втулочным подшипником демпфирующей способностью.

Естественно, конструкция сегментного опорного подшипника, где каждый сегмент снабжается маслом индивидуально, значительно сложнее, чем втулочного. Однако резко возросшая надежность окупает это усложнение.

Что касается упорного подшипника, то его конструкция всесторонне рассмотрена еще Стодолой и за истекшее столетие практически не претерпела каких-либо изменений. Опоры, в которых располагаются упорный и опорные подшипники, изготавливают скользящими с «фикспунктом» в районе упорного подшипника. Это обеспечивает минимизацию осевых зазоров в области максимального давления пара, т.е. в области самых коротких лопаток, что в свою очередь позволяет минимизировать в этой зоне потери от утечек.

Рис. 3.8. Продольный разрез турбины К-50-90: 1 – ротор турбины; 2 – корпус турбины; 3 – опорно-упорный подшипник; 4 – опорный подшипник; 5 – регулирующий клапан; 6 – сопловая коробка; 7 – кулачковый вал; 8 – сервомотор; 9 – главный масляный насос; 10 – регулятор скорости; 11 – следящий золотник; 12 – картер переднего подшипника; 13 – червячное колесо валоповоротного устройства; 14 – соединительная муфта; 15 – выхлопной патрубок турбины; 16 – насадные диски; 17 – рабочие лопатки; 18 – диафрагмы; 19 – обоймы диафрагм; 20 – обоймы переднего концевого уплотнения; 21 – перепускная труба (от стопорного к регулирующему клапану)

Типичная конструкция одноцилиндровой конденсационной турбины мощностью 50 МВт с начальными параметрами пара 8,8 МПа, 535°С представлена на рис. 3.8. В этой турбине применен комбинированный ротор. Первые 19 дисков, работающих в зоне высокой температуры, откованы как одно целое с валом турбины, последние три диска — насадные.

Неподвижную сопловую решетку, закрепленную в сопловых коробках или диафрагмах с соответствующей вращающейся рабочей решеткой, закрепленной на следующем по ходу пара диске, называютступенью турбины. Проточная часть рассматриваемой одноцилиндровой турбины состоит из 22 ступеней, из которых первая называетсярегулирующей. В каждой сопловой решетке поток пара ускоряется и приобретает направление безударного входа в каналы рабочих лопаток. Усилия, развиваемые потоком пара на рабочих лопатках, вращают диски и связанный с ними вал. По мере понижения давления пара при прохождении от первой к последней ступени удельный объем пара растет, что требует увеличения проходных сечений сопловых и рабочих решеток и, соответственно, высоты лопаток и среднего диаметра ступеней.

К переднему торцу ротора прикреплен приставной конец вала, на котором установлены бойки предохранительных выключателей (датчики автомата безопасности), воздействующие на стопорный и регулирующие клапаны и прекращающие доступ пара в турбину при превышении частоты вращения ротора на 10–12% по сравнению с расчетной.

Статор турбины состоит из корпуса, в который вварены сопловые коробки, соединенные с помощью сварки с клапанными коробками, установлены обоймы концевых уплотнений, обоймы диафрагм, сами диафрагмы и их уплотнения. Корпус этой турбины, кроме обычного горизонтального разъема, имеет два вертикальных разъема, разделяющих его на переднюю часть, среднюю часть и выходной патрубок. Передняя часть корпуса выполнена литой, средняя часть корпуса и выходной патрубок сделаны сварными.

В переднем картере расположен опорноупорный подшипник, в заднем картере – опорные подшипники роторов турбины и генератора. Передний картер установлен на фундаментной плите и при тепловом расширении корпуса турбины может свободно перемещаться по этой плите. Задний картер выполнен за одно целое с выхлопным патрубком турбины, который при тепловых расширениях остается неподвижным благодаря его фиксации пересечением поперечной и продольной шпонок, образующих так называемыйфикспункттурбины, или мертвую точку. В заднем картере турбины расположено валоповоротное устройство.

В турбине К-50-90 применена сопловая система парораспределения, т.е. количественное регулирование расхода пара. Устройство автоматического регулирования турбины состоит из четырех регулирующих клапанов, распределительного кулачкового вала, соединенного зубчатой рейкой с сервомотором. Сервомотор получает импульс от регулятора скорости и регулирует положение клапанов. Профили кулачков выполнены так, чтобы регулирующие клапаны открывались поочередно один за другим. Последовательное открытие или закрытие клапанов исключает дросселирование пара, проходящего через полностью открытые клапаны при пониженных нагрузках турбины.





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:
©2015- 2019 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.