Расчет производственных площадей
Исходные данные: 1. Список устанавливаемого оборудования (см. таб. 3.2) Таблица 3.2 Спецификация оборудования
2. Коэффициент использования площади – 3,5 Расчет: 1. Площадь, занятая под оборудование составляет: 145,215 * 3,5 = 508,253 м3 2. Принимая шаг колонны производственных помещений 12х12 = 144 м2, получим число ячеек под оборудование: 3,5 = 4 3. Принимаем размер площади под оборудование в здании с шагом колонн 12х12, равен: 12х12х4 = 576 м2 4. Обзор анализ литературных источников и патентные исследования по теме 5 проекта
Обзор и анализ литературных источников Применение тепловых насосов (ТН) в ряде химико-технологических процессов (ХТП), имеющих дело с парами рабочего тела низкого давления приводит [1-4] к значительной экономии энергетических затрат. Дело в том,/ что повышение давления паров сопровождается ростом температуры конденсации, и становится возможным использовать теплоту их конденсации для испарения того же рабочего тела с более низкой температурой кипения. Затраты энергии на сжатие паров рабочего тела почти на порядок меньше, нежели на производство пара рабочего тела высокого потенциала; поэтому применение ТН экономически выгодно. ТН особенно перспективны в энергоёмких процессах химической технологии, таких как выпаривание, дистилляция, ректификация, выпарная кристаллизация. Наибольший эффект от ТН возможен в непрерывных крупнотоннажных производствах. Рассмотрим и оценим эффективность применение различных вариантов ТН на примере модельной схемы непрерывного испарения чистой воды с помощью греющего водяного пара (рисунок 4.1). В кипятильник 1 поступает поток воды W с температурой t1. Б его трубном пространстве давление равно р; вода там догревается до температуры кипения t, отвечающей р, и целиком переходит во вторичный пар, отводимый сверху. Межтрубное пространство кипятильника обогревается потоком насыщенного водяного пара D более высокого давления Р > р, температурой конденсации Т > t. Конденсат последнего выводится из межтрубного пространства кипятильника. В аппарате с частичным ТН (ЧТН) лишь часть образующегося в кипятильнике 1 пара сжимается в инжекторе 2 за счёт подачи потока D 0 пара высокого давления (рисунок 4.1а). Здесь очевидны недоиспользование пара низкого потенциала (поток (W- D в) отводится с установки) и значительный подвод свежего пара (поток D0 в инжектор). Тем не менее, как будет показано ниже, этот вариант ТН может при определённых условиях конкурировать с полным ТН (ПТН), изображённым на (рисунок 4.1б). В последнем случае весь образующийся в кипятильнике пар сжимается в турбокомпрессоре 2 до давления греющего пара р и используется для испарения потока подаваемой жидкости W.
Принципиально важным здесь является ответ на вопрос: хватит ли потока вторичного пара W после его сжатия до давления Р. чтобы обеспечить подогрев потока подаваемой жидкости W до температуры кипения при давлении р и полное испарение этого потока. Ответ на этот вопрос найдём, записав (без учёта теплопотерь в окружающую среду) тепловой баланс для пространственного контура I (кстати, одинакового для всех вариантов ТН, в том числе и для частичного ТН), позволяющий определить необходимый поток греющего пара D:
откуда
Здесь с - теплоёмкость воды (она мало изменяется с температурой; поэтому принята одинаковой для поступающей воды и конденсата); i и h - энтальпии насыщенных паров - вторичного и греющего; r * = i - ct и r ** = = h - сТ - теплоты парообразования (конденсации) вторичного (давление р) и греющего (давление Р) пара, соответственно. После сжатия в компрессоре пар получается перегретым (рисунок 4.2, т.З на диаграмме Р,р- h, i); Его температура Тп больше температуры Т сухого насыщенного пара (т.4). Энтальпия перегретого пара h " = h + Сп(Тп - Т), где Сп - теплоёмкость пара, равная 1.98 кДж/(кг К). Из (1) следует, что при подаче в кипятильник исходной воды с температурой кипения (t 1 =t), тем более при t < t, поток сжатого пара W меньше необходимого потока греющего пара D, т.к. с ростом давления теплота парообразования (конденсации) понижается - см. рисунок 4.2:. Поэтому для полного испарения потока исходной воды W к сжатому вторичному пару требуется, как правило, добавить дополнительный поток D+ свежего греющего пара. Его можно найти из теплового баланса узла смешения
Анализ формул (2) и (3) показывает, что величина D+> 0 при t1<t. При t1~t величина D+=0 за счёт теплоты перегрева сжатого пара, хотя его поток W, безусловно, меньше необходимого потока D греющего пара. Дополнительный поток D+ может быть уменьшен или совсем исключён путем усовершенствования ТН.
Оно заключается в дросселировании конденсата (он находится при давлении Р и температуре кипения Т) греющего пара до давления вторичного пара р; на рисунке 4.2 эта операция изображается вертикалью 5-6. Как видно из рисунка 4.2, в результате дросселирования получается влажный пар (с температурой t), смещённый к состоянию кипящей жидкости при давлении р. Сухой пар (его доля X во влажном паре, иначе - степень сухости последнего, невелика, но заметна) можно направить на сжатие в компрессор 2, добавив к основному потоку W. Это позволяет в значительной мере скомпенсировать дополнительный поток греющего пара D+. Такой тепловой насос назван нами [14] компенсирующим - КТН. Он отличается от обычного полного ТН наличием дроссельного вентиля 3 и сепаратора 4 {рисунок 4.1в). Анализ модельной схемы КТН будем вести с обусловленными выше допущениями. Тепловой баланс для пространственного контура I идентичен рассмотренному для схемы на рисунке4. 1б и приводит к выражению (1). Тепловой баланс для пространственного контура II, охватывающего дроссельный вентиль (в нём не происходит изменения энтальпии) и сепаратор, имеет вид:
Отсюда находим степень сухости пара X и его поток DX, направляемый на сжатие
В случае самоиспарения перегретой воды величина X реально близка к 0,05; в случае органических жидкостей она может превышать 0,1 [14] Из материального баланса узла III видно, что в компрессоре теперь сжимается поток пара W + DX. Из теплового баланса узла IV можно найти дополнительный поток пара, необходимый чтобы обеспечить подогрев потока подаваемой жидкости W до температуры кипения при давлении р и полное испарение этого потока:
Анализ формулы (8) приводит к выводу, что при питании кипятильника водой при температуре кипения получается D+< 0. Это означает, что в рассматриваемом случае не только не требуется дополнительного пара, но даже появляется возможность отводить некоторое количество пара (-D+ ≡ Е) стороннему потребителю, как показано штриховой линией на рисунке 4.1в. Либо можно подавать в кипятильник воду ниже температуры кипения в соответствии с формулой (7) при D+ - 0.
Оптимальный (с точки зрения теплоиспользования) ТН (ОТН) отличается от КТН наличием сепаратора 5(рисунок 4.1г), в котором перегретый пар (после сжатия пара в турбокомпрессоре 2) барботирует через конденсат греющего пара, находящийся при давлении Р и температуре кипения Т, с испарением части конденсата. За счёт этого испарения получаемый поток Д" сухого насыщенного греющего пара становится больше необходимого для проведения данного процесса потока D греющего пара и появляется возможность отводить некоторое количество пара на сторону - поток Е, показанный на рисунке штриховой линией. Либо можно подавать в кипятильник воду, заметно недогретую до температуры кипения. Поток избытка Е пара высоких параметров и другие материальные потоки этой схемы ТН можно найти на базе материальных (МБ) и тепловых (ТБ) балансов для различных узлов и аппаратов на рисунке 4.1г. Приведём основные вехи технологического расчёта, полагая как и ранее с, Сп = const. ТБ для контура I, необходимый для определения расхода греющего пара D, совпадает с записанным выше; поэтому D рассчитывается по (1). МБ для контура II позволяет определить поток насыщенного пара высокого давления D" из сепаратора 5:
В расчётные уравнения входит температура перегретого пара Тп после компрессора. Определим её с учётом адиабатического КПД ηад последнего, используя диаграмму состояния рабочего тела h - s. Найдя по диаграмме (известны состояние пара перед сжатием и давления р,Р) удельную адиабатическую работу сжатия Lад= h * - i, рассчитываем реальную работу сжатия: L = L ад /η ад= h ’’ – i. Откладывая в диаграмме (на кривой Р) энтальпию h " фиксируем точку состояния рабочего тела после сжатия и его параметры, включая Тп (подробнее см. [14]). Например для водяного пара при t =100 ° C, p = 0.1 МПа, Р = 0,25МПа и ηад = 0,7 имеем: Тп = 230 °С. Перегрев при политропном сжатии Тп- Т = 97 °С; это значит, что реальная теплота перегрева пара C п (Tn - T) = 190 кДж/кг составляет заметную долю от теплоты парообразования греющего пара г** = 2370 кДж/кг. Эти цифры говорят о вполне значимой добавке пара при использовании и учёте теплоты его перегрева. Перед сравнением различных вариантов ТН несколько соображений о подходе к оценке их эффективности. Одним из типичных примеров использования принципа теплового насоса являются машины умеренного охлаждения. Для их оценки и сопоставления введено [15,16,17] понятие о холодильном коэффициенте εх, выражающим количество холода, производимого в испарителе, приходящееся на единицу затраченной адиабатической работы:
Таблица 4.1
Для тепловых насосов, предназначенных для повышения потенциала пара с целью последующей передачи теплоты q при температуре Тв верхнего источника более целесообразен коэффициент эффективности тепловых насосов (ε), называемый также коэффициентом преобразования. [5]:
Коэффициент эффективности ТН ε, как и холодильный коэффициент ε, в определённом смысле характеризует термодинамическое совершенство реализуемого теплового насоса: чем выше ε, тем выгоднее данный вариант теплового насоса. Разумеется, сравнение вариантов ТН следует проводить при одинаковых уровнях и перепадах температур, поскольку ε, как и ε х в значительной степени зависит не только от перепада температур, но и от их уровня.
На рисунке 4.4 приведено сравнение коэффициентов эффективности полного ТН (теоретического и реального) в области температур от 100 до 150 °С. В качестве нижнего температурного уровня t н выбрана температура 100 °С, соответствующая водяному пару, получаемому из воды при атмосферном давлении. Теоретический (для идеального ТН) коэффициент эффективности ТН рассчитывали по формуле, аналогичной для εх в случае идеальной холодильной машины:
В реальных условиях работы ТН коэффициент эффективности ТН рассчитывается по левой формуле (18), причем работа сжатия 1 кг водяного пара может быть рассчитана с помощью энтальпийно-энтропийной диаграммы h, i - S водяного пара как разность энтальпий конечного и начального состояний (h " - i) или (h * - i)/ η ад (рисунок 4.5). С учётом механического к.п.д. компрессора η мех работа сжатия равна:
При расчётах по формуле (22) принята Сп -1,98 кДж/(кгК); η ад = 0,78; η мех =0,9; i = 2676 кДж/кг. Результаты расчёта εр при давлениях Р= 2, 3 и 4 ата приведены в таблице 4.1. Из рисунка4. 4 видно, что коэффициент эффективности реального ТН составляет 65 — 70 % от теоретического коэффициента эффективности ТН, что близко к произведению двух коэффициентов η ад * η мех равному 0,702. С увеличением разности температур (давлений) коэффициент эффективности ТН (коэффициент преобразования) εр закономерно уменьшается, оставаясь достаточно высоким. При оценке эффективности применения ТН необходимо учесть большую стоимость единицы электроэнергии (для работы турбокомпрессора) по сравнению с тепловой в виде греющего пара. По данным различных заводов РФ коэффициент К, равный отношению цен за единицу электроэнергии и тепловой в виде пара давлением до 1 МПа, колеблется в широких пределах (от 3 до 6). С учётом этого соотношения экономический коэффициент эффективности ТН будет в К раз меньше: εэк = ε р / K. Расчёт εэк для ПТН и КТН с учётом формулы (22) дает одинаковый результат в расчёте на 1 кг сжимаемого в турбокомпрессоре пара. Однако при сравнении эффективности применения ПТН, КТН и ОТН необходимо учесть долю свежего пара d ≡ D + / D, дополнительно подаваемого, как правило, в аппарат с ПТН и, наоборот, отводимого с установки в случае КТН и ОТН. Тогда экономический коэффициент эффективности εэк при работе с ПТН, КТН и ОТН по сравнению с работой кипятильника без ТН может быть рассчитан по формуле:
Здесь εр рассчитывается по формуле (22), но без учёта теплоты перегрева паров, так как последняя учтена при расчётах D + из тепловых балансов узлов смешения (контур II на рисунке 4.1б и контур IV на рисунке 4.1в). Результаты расчётов εэк по формуле (23) совместно с (3), (8) и (12) при условии t 1 = t, р=0,1 МПа и Р=0,25МПа и различных значениях К представлены на рисунке 4.6. При работе без ТН подаётся только свежий пар (d = 1) и, естественно, величина εэк = 1. Для частичного теплового насоса экономический коэффициент эффективности не зависит, естественно, от соотношения цен К за единицу электроэнергии и тепловой в виде пара. Он полностью определяется коэффициентом инжекции U = D в / Do и возможным отличием цен на пар высокого давления и рабочего, характеризующимся коэффициентом Кп.
На ряде предприятий РФ цена за 1 кг пара при давлениях от 0,3 до 1 МПа одинакова, тогда Кп = 1. Так как D = D0 + D в = D 0 (1+ U), то D / Do = 1+ U, a коэффициент преобразования для ЧТН:
При U = 0.6 и принятом Кп = 1 на рисунке 4.6 получим горизонтальную линию, пересекающую εэк для других вариантов ТН при значениях К > 5,5-5,8. Это свидетельствует, что турбокомпрессоры в схемах ТН выгодно применять при не очень большом соотношении цен за единицу электроэнергии и тепловой (менее 5). При значениях К > 6 в случае одинаковых цен на пар высокого и среднего (рабочего) давлений экономически более выгодным может оказаться частичный ТН. При К < 5 наиболее выгодным является ОТН. Совсем немного (по величине εэк примерно на 1 %) уступает ему КТН и чуть больше - ПТН (примерно на 6%).Однако в последних двух случаях обогрев кипятильника производится перегретым паром, что приводит к ухудшению условий теплопередачи. Поэтому схему ОТН следует считать наиболее целесообразной. Штриховой линией на рисунке 4.6 показана зависимость εэк от К для ПТН без учёта теплоты перегрева паров после сжатия. Видно, что доля последней составляет 5 - 7 % от полной энтальпии пара и пренебрегать ею не следует. Однако для эффективного использования этой теплоты перегрева следует применять полное внутреннее охлаждение паров в сепараторе высокого давления, как это показано на рисунке 4.1г. Сравнение эффективности применения ТН в процессах выпаривания, дистилляции и ректификации может быть проведено по той же канве. Задачей данных патентных исследований является поиск информации об энергосберегающих технологиях и оборудовании для энергосбережения в процессах кристаллизации растворов солей и, в частности, сульфатов. Поиск проведен по материалам, предоставленным в таб. 4.2.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|