Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пленки тантала и его соединений

 

Пленки тантала и его соединений в последние годы получают все более широкое распространение при изготовлении тоикопленочных элементов интегральных схем. Выбор тантала в качестве исходного материала во многом объясняется тем, что в зависимости от условий получения талталовых пленок они могут иметь различную структуру и соответственно в широких пределах изменять как свое удельное сопротивление, так и его температурный коэффициент.

По кристаллическому строению и электрофизическим свойствам к массивному образцу наиболее близки пленки α- тантала, имеющие крупмокристаллическую объемно-центрованную структуру и обладающие сравнительно невысоким удельным сопротивлением (20— 40 мкОм-см). В отличие от к-тантала р-тантал, имеющий тетрагональную мелкокристаллическую структуру и удельное сопротивление 160—200 кмОм • см, в массивных образцах не встречается. Эта метастабильная модификация тантала характерна только для тонких пленок.

Получение пленок α - и β- тантала обычно производят путем катодного распыления при напряжении 4—5 кВ и плотности тока 0,1--1 мА/см2. Если снизить напряжение и при этом не увеличивать давление аргона, то разрядный ток уменьшится, что приведет к значительному снижению скорости осаждения. При этом получаются пленки низкой плотности, имеющие сильно пористую структуру с размерами пор (4—7)-10-3 мкм, состоящие из большего числа зерен к- или р-тантала с размерами кристаллов (3—5) • 10-2 мкм. Высокая пористость пле­нок и появление системы металл — диэлектрическая смесь вызывают аномальное повышение удельного со­противления (примерно в 200 раз по сравнению с α- танталом) и изменение его температурного коэф­фициента. Если в аргон добавить азот в количестве, существенно превышающем фон остаточных газов, то мо­гут быть получены пленки нитрида тантала, имеющие два устойчивых состояния Та2N и TaN с разной кри­сталлической структурой и электрофизическими свой­ствами.

Наличие нескольких модификаций тантала (α- и β- тантал, тантал малой плотности) и его нитрида дает возможность выбора самых различных топологических решений при проектировании пассивной части микро­схем.

 Чистый α- тантал из-за больших механических на­пряжений в пленке и плохой адгезии.к подложке не нашел широкого применения при изготовлении RС -элементов микросхем, β- тантал используется для изготов­ления нижних обкладок конденсаторов и частично для получения резисторов. Нитрид тантала и тантал малой плотности используются для изготовления резисторов. Практическая ценность тантала с низкой плотностью заключается в возможности получать высокостабильные тонкопленочные резисторы (от 10 кОм до нескольких мегаом), имеющие небольшие размеры и простую кон­фигурацию. Из тантала с низкой плотностью могут быть значительно легче изготовлены тонкопленочные конденсаторы, поскольку в этом случае верхний элек­трод, так же как и нижний, можно получать путем рас­пыления тантала, в то время как при использовании тантала обычной плотности попытки получить таким путем верхний электрод часто приводили к повреждению диэлектрического слоя. Кроме того, тантал с низкой плотностью позволяет изготовлять RС- схемы с распре­деленными параметрами и регулируемым номиналом резистора, в качестве которого может быть использован верхний электрод конденсатора.

Получаемая с помощью электролитического или плазменного анодирования пятиокись тантала (Та2О5) обладает низкими диэлектрическими потерями и может применяться как в качестве диэлектрика для конденса­тора, так и в качестве изолятора или защитного слоя для резистора. Кроме того, с помощью анодирования можно точно юстировать номиналы конденсаторов и ре­зисторов. Применение ионного травления, а также рас­творимость нитрида тантала, чистого тантала и его окислов в различных травителях обусловливают воз­можность использования самых различных методов для получения требуемой конфигурации микросхем.

Таким образом, на основе тантала можно обеспечить групповое изготовление пассивных элементов (резисто­ров, конденсаторов, соединительных проводников и кон­тактных площадок) как с сосредоточенными, так и с распределенными параметрами, которые по своей сложности не уступают элементам, изготовленным на основе других материалов, но при этом обладают значительно большой точностью, стабильностью и надежностью. Универсальность тантала и отсутствие необходимости использовать другие материалы свидетельствует о том, что на основе «танталовой технологии» может изготовляться подавляющее большинство пассивных элементов ИС.

 

 

 

 

ЗАКЛЮЧЕНИЕ

Для современного этапа развития интегральной электроники характерны тенденции дальнейшего повышения рабочих частот и уменьшения времени переключения, увеличения надежности, снижения затрат на материалы и процесс изготовления ИС.

Снижение стоимости ИС требует разработки качественно новых принципов их изготовления с использованием процессов, в основе которых лежат близкие по характеру физико-химические явления, что, с одной стороны, является предпосылкой для последующей интеграции однородных технологических операций производственного цикла и, с другой стороны, открывает принципиальные возможности управления всеми операциями от ЭВМ. Необходимость качественных изменений в технологии и технического перевооружения отрасли диктуется также переходом к следующему этапу развития микроэлектроники — функциональной электронике, в основе которой лежат оптические, магнитные, поверхностные и плазменные явления, фазовые переходы, электронно-фононные взаимодействия, эффекты накопления и переноса заряда и др.

Критерием «прогрессивности» технологического процесса наряду с улучшением параметров и характеристик самого изделия является высокая экономическая эффективность, определяемая рядом частных, взаимосвязанных критериев, обеспечивающих возможность построения комплектов полностью автоматизированного высокопроизводительного оборудования с длительным сроком эксплуатации.

Наиболее важными частными.критериями являются:

универсальность, т. е. возможность проведения всего (или подавляющего числа операций) производственного цикла с помощью одних и тех же технологических приемов;

непрерывность, являющаяся предпосылкой для последующей интеграции (объединения) целого ряда технологических операций производственного цикла, сочетаемая с возможностью использования одновременной групповой обработки значительного количества изделий или полуфабрикатов;

высокая скорость проведения всех основных операций технологического процесса или же возможность их интенсификации, например, в результате воздействия электрических и магнитных полей, лазерного излучения и др.;

воспроизводимость параметров на каждой операции и высокий процент выхода как полуфабрикатов, так и годных изделий;

технологичность конструкции изделия или полуфабриката, соответствующая требованиям автоматизированного производства (возможности автоматизированной загрузки, базирования, монтажа, сборки и др.), что должно найти свое отражение в простоте формы, а также ограниченности допусков на габаритные и базовые размеры;

формализация, т. е. возможность составления (на основе аналитических зависимостей параметров изделия от параметров технологического процесса) математического описания (алгоритма) каждой технологической операции и последующего управления всем технологическим процессом с помощью ЭВМ;

адаптивность (жизненность) процесса, т. е. способность длительного существования в условиях непрерывного появления и развития новых конкурентоспособных процессов и возможность быстрого перестраивания оборудования под изготовление новых видов изделий без существенных капитальных затрат.

Большинству из перечисленных критериев удовлетворяют процессы, использующие электронные и ионные явления, происходящие в вакууме и разреженных газах, с помощью которых можно производить:

ионное распыление металлов, сплавов, диэлектриков и полупроводников с целью получения пленок различной толщины и состава, межсоединений, емкостных структур, межслойной изоляции, межслойной разводки;

ионное травление металлов, сплавов, полупроводников и диэлектриков с целью удаления отдельных локализованных участков при получении конфигурации ИС;

плазменное анодирование с целью получения окисных пленок;

полимеризацию органических пленок в местах, облученных электронами, с целью получения органических изоляционных слоев;

очистку и полировку поверхности подложек;

выращивание монокристаллов;

испарение материалов (в том числе тугоплавких) и перекристаллизацию пленок;

микрофрезерование пленок;

микросварку и микропайку с целью подсоединения выводов ИС, а также герметизацию корпусов;

бесконтактные методы контроля параметров ИС.

Общность физико-химических явлений, на которых базируются перечисленные процессы показывает принципиальную возможность их последующей интеграции с целью создания новой технологической базы высокопроизводительного автоматизированного производства интегральных схем и приборов функциональной электроники.

 

Список литературы.

 

1. “ Получение тонкопленочных элементов микросхем ” Б.С. Данилов

2. “Зарубежная электронная техника” Н.А. Акуленко

3. “Электронная промышленность” А.С. Грибов

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...