Газификация твердого топлива. Схема газогенератора. Классификация генераторного газа.
Основные направления повышения энергосбережения: традиционные и нетрадиционные. Традиционные и нетрадиционные источники электрической энергии Нетрадиционные и возобновляемые источники энергии - источники электрической и тепловой энергии, использующие энергетические ресурсы рек, водохранилищ и промышленных водостоков, энергию ветра, солнца, биомассы (включая древесные отходы), сточных вод и твердых бытовых отходов. Широкое практическое использование электроэнергии в сравнении с другими видами энергии объясняется относительной легкостью ее получения и возможностью передачи на большие расстояния. Традиционные источники электрической энергии: Тепловые электростанции (ТЭС) вырабатывают электроэнергию в результате преобразования тепловой энергии, которая выделяется при сжигании органического топлива (угля, нефти, газа). Невосполнимость этих природных ресурсов заставляет задуматься о рациональном их применении и замене более дешевыми способами получения электроэнергии.
Нетрадиционные источники электрической энергии, где невосполняемые энергоресурсы практически не тратятся: Ветроэнергетическая установка способна превращать энергию ветра в электроэнергию. Запасы ветровой энергии на территории нашей страны огромны, так как во многих районах среднегодовая скорость ветра составляет б м/с. Устройство ветроэнергетической установки достаточно простое: вал ветряного колеса, способного вращаться под действием ветра, передает вращение ротору генератора электрической энергии. Стоимость производства электроэнергии на ветровых электростанциях ниже, чем на любых других. Кроме того, ветроэнергетика экономит богатства недр. Недостатки ветроэнергетических установок — низкий коэффициент полезного действия, небольшая мощность. Они применяются там, где нет стабильного обеспечения электроэнергией — на нефтяных разработках, горных пастбищах, в пустынях и т. п.
http://dom-en.ru/sprav2/ http://fluitech.com.ua/ru/articles/106.html
Газификация твердого топлива. Схема газогенератора. Классификация генераторного газа. Газификацией твёрдых топлив (ГТТ) называется процесс преобразования (конверсии) органической части твёрдого топлива (ТТ) в генераторный газ (ГГ), удобный для последующего сжигания, как в горелках котлов различного назначения, так и в камерах сгорания (внешних и внутренних) двигателей различных типов. Главным преимуществом технологии ГТТ (по крайней мере, с экологической точки зрения) является низкий уровень негативного воздействия на окружающую среду. Это, в первую очередь, обусловлено достаточно продолжительным (более 3-х секунд) нахождением газообразных продуктов ГТТ сначала в зоне окисления (горения) при температурах 1 000... 1 200 0С, а затем в восстановительной (бескислородной) зоне формирования ГГ. При таких условиях происходит термическое разложение и восстановительное дехлорирование наиболее опасных веществ - диоксинов, фуранов, полихлорбифенилов, бенз(а)пиренов и других полициклических ароматических углеводородов.
Ещё одним преимуществом газификации в сравнении с прямым сжиганием ТТ является образование гораздо меньших объёмы газов, подлежащих очистке. Кроме того, в результате более полного (в сравнении с прямым сжиганием ТТ) сгорания газообразного топлива образуется значительно меньшее (в разы, а, по некоторым позициям, и на порядки) количество вредных для окружающей среды химических соединений (как в дымовых газах, так и в зольном остатке). Всё это позволяет существенно сэкономить на дорогостоящем оборудовании газоочистки дымовых газов, выбрасываемых в атмосферу (стоимость такого оборудования, например, в составе мусоросжигающих заводов составляет более 50%) и оборудовании обеззараживания твёрдых вторичных отходов. Наконец, при газификации недожог топлива сравнении с прямым сжиганием существе ниже, т.к. происходит почти 100% конверсия углерода при переходе его из твёрдого в газообразное состояние, а в ГГ / зольном остатке практически отсутствует сажа / непрореагировавший углерод. Газификации могут быть подвергнуты все известные виды горючих ископаемых (каустобиолитов), а также любые углеродсодержащие отходы в конденсированном виде (по отдельности и в самых разнообразных смесях) с влажностью и зольностью до 50% и широким диапазоном гранулометрического состава (от долей до сотен миллиметров), включая осадки канализационных и сточных вод. При этом можно получить ГГ заданного химического состава или заданной теплоты сгорания, так как эти показатели определяются выбранной схемой газификации, а также температурой, давлением и составом применяемых газифицирующих агентов. Генераторный газ получают при газификации различных твердых топлив в газогенераторах при помощи воздуха, водяного пара и иногда двуокиси углерода. Теплота сгорания генераторного газа колеблется обычно в пределах 5,03 - 6,71 Мдж/м3, достигая (для водяного генераторного газа) 10,5 Мдж/м3. В промышленности применяется способ получения генераторного газа с теплотой сгорания до 16,8 Мдж/м3 с использованием парокислородного дутья при газификации под высоким давлением. Этот метод позволяет осуществлять переработку низкосортных бурых углей на месте их добычи с передачей высококалорийного газа потребителям по газопроводам на значительное расстояние.
Доменный газ получается в больших количествах при выплавке чугуна в доменных печах. Он является низкокалорийным газом - его теплота сгорания составляет лишь 3,35 - 4,19 Мдж/м3, и поэтому в высокотемпературных печах его чаще всего сжигают в смеси с коксовым газом. Доменная печь представляет собой как бы мощный газогенератор с выпуском жидких шлаков, работающий на коксе. Одновременно с газогенераторным процессом в печи осуществляется металлургический процесс выплавки чугуна из железной руды. Оба процесса органически связаны, причем выработка доменного газа имеет подчиненное значение. Таблица 9-3: классификация горючих газов
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|