пребывания жидкости в аппаратах
A - альфа B - бета G - гамма D - дельта E - эпсилон H - эта I - йота J - фи K - каппа L - ламбда M - мю N - ни(ню) O - омикрон P - пи Q - тхэта R - ро S - сигма T - тау U - ипсилон W - омега X - кси Y - пси C - хи Z - дзета Содержание Лекция 1. Общие сведения о курсе 5 Лекция 2. Основы гидравлики. Гидростатика 23 Лекция 3. Гидродинамика 45 Лекция 4. Перемещение жидкостей 137 Лекция 5. Перемещение и сжатие газов (компрессорные машины) 160 Лекция 6. Разделение неоднородных систем 178 Лекция 7. Центрифугирование 205 Разделение газовых систем (очистка газов) 215 Перемешивание в жидких средах 234 Лекция 8. Кристаллизация 243 Лекция 9. Измельчение твердых материалов 252 Лекция 10. Классификация и сортировка материалов 276 Смешение твердых материалов 287 Дозирование твердых материалов 290 ЛИТЕРАТУРА 306
ЛЕКЦИЯ 1 I. Общие сведения 1. Предмет курса "Процессы и аппараты" 2. Возникновение и развитие науки о процессах и аппаратах 3. Классификация основных процессов 4. Общие принципы анализа и расчета процессов и аппаратов 5. Различные системы единиц измерения физических величин
I. ОБЩИЕ СВЕДЕНИЯ
1. Предмет курса «Процессы и аппараты»
В химической промышленности осуществляются разнообразные процессы, в которых исходные материалы в результате химического взаимодействия претерпевают глубокие превращения, сопровождающиеся изменением агрегатного состояния, внутренней структуры и состава веществ. Наряду с химическими реакциями, являющимися основой химико-технологических процессов, последние обычно включают многочисленные физические (в том числе механические) и физико-химические процессы. К таким процессам относятся: перемещение жидкостей и твердых материалов, измельчение и классификация последних, сжатие и транспортирование газов, нагревание и охлаждение веществ, их перемешивание, разделение жидких и газовых неоднородных смесей, выпаривание растворов, сушка материалов и др. При этом способ проведения указанных процессов часто определяет возможность осуществления, эффективность и рентабельность производственного процесса в целом.
Таким образом, технология производства самых разнообразных химических продуктов и материалов (кислот, щелочей, солей, минеральных удобрений, красителей, полимерных и синтетических материалов, пластических масс и т.д.) включает ряд однотипных физических и физико-химических процессов, характеризуемых общими закономерностями. Эти процессы в различных производствах проводятся в аналогичных по принципу действия машинах и аппаратах. Процессы и аппараты, общие для различных отраслей химической технологии, получили название основных процессов и аппаратов. Например, одним из основных процессов является перегонка (ректификация) — процесс разделения жидких смесей, основанный на различии давления паров компонентов смеси. Этот процесс применяется для разделения жидкого воздуха в производстве кислорода, разделения воды и азотной кислоты в производстве азотной кислоты, разделения сложной смеси органических продуктов для получения дивинила в производстве синтетического каучука и во многих других химических производствах. К числу основных аппаратов относятся тарельчатые и насадочные колонны, широко применяемые не только для проведения процессов ректификации, но также для извлечения компонентов из газовых или паровых смесей жидким поглотителем (процессы абсорбции), очистки газов от пыли и т.д.
Насосы и компрессоры, фильтры и центрифуги, теплообменники и сушилки также относятся к числу основных аппаратов и машин, которые в разных сочетаниях составляют типовое оборудование большинства химических производств. В курсе «Процессы и аппараты» изучаются теория основных процессов, принципы устройства и методы расчета аппаратов и машин, используемых для проведения этих процессов. Анализ закономерностей основных процессов и разработка обобщенных методов расчета аппаратов производятся исходя из фундаментальных законов физики, химии, физической химии, термодинамики, экономики и других наук. Курс строится на основе выявления аналогии внешне разнородных процессов и аппаратов независимо от отрасли химической промышленности, в которой они используются. В этом курсе изучаются также закономерности перехода от лабораторных процессов и аппаратов к промышленным. Знание закономерностей перехода от одного масштаба к другому и переноса данных, полученных на одной системе — модели, на другую систему, представляющую собой объект натуральной величины (моделирование), необходимо для проектирования большинства современных, обычно многотоннажных производственных процессов химической технологии. Так, например, химический процесс, изученный в лаборатории (в малом масштабе) с точки зрения механизма реакции, закономерностей ее протекания во времени и т.п., далеко не всегда может быть воспроизведен с теми же показателями в крупном масштабе. Для осуществления процесса в промышленном реакторе помимо химической сущности процесса должны быть установлены его параметры в зависимости от конструкции аппарата, структуры потоков и режимов их движения, скорости переноса тепла и массы и др. Совокупное влияние этих факторов определяет так называемую макрокинетику процесса, связанную с массовым движением макрочастиц – пузырей, капель, струй и т.п. В науке о процессах и аппаратах изучается макрокинетика основных процессов химической технологии. При этом используются данные по микрокинетике, характеризуемой элементарными, независимо протекающими на молекулярном уровне процессами, такими, как теплопроводность, молекулярная диффузия и т.д., которые рассматриваются в физике, физической химии, химической термодинамике и других науках.
Сказанным определяется значение курса «Процессы и аппараты» для изучения не только физических, но и химических промышленных процессов, а также аппаратов для их проведения, причем проблемы масштабирования и моделирования особенно интенсивно разрабатываются в последние годы. Таким образом, курс «Процессы и аппараты» является инженерной дисциплиной, представляющей собой важный раздел теоретических основ химической технологии. Этот курс можно охарактеризовать как составную часть комплекса дисциплин, освещающих различные аспекты химической технологии как науки. К таким дисциплинам относятся курсы общей химической технологии и технологии конкретных отраслей химической промышленности, для которых производится подготовка инженеров (химиков-технологов). В частности, с курсом «Процессы и аппараты» тесно связан учебный курс «Общая химическая технология», в котором также изучаются общие закономерности химической технологии путем обобщения принципов построения производственных схем химико-технологических процессов и анализа вопросов наиболее рационального, комплексного использования сырья, энергии и другие. Оба курса освещают общие начала, которые должны быть синтетически использованы при разработке наиболее эффективных с технико-экономической точки зрения процессов производства в любых отраслях химической технологии. 2. Возникновение и развитие науки о процессах и аппаратах
Химическая промышленность начала создаваться на рубеже XVIII-XIX веков и за исторически короткий период, насчитывающий всего 120-150 лет, превратилась в технически развитых странах в одну из особенных и ведущих отраслей народного хозяйства. С развитием химической промышленности возникла потребность в инженерной науке, обобщающей закономерности основных производственных процессов и разрабатывающей методы расчетов аппаратов на основе их рациональной
В течение последних пятидесяти лет наука о процессах и аппарата: непрерывно развивалась. Её роль и значение в разработке на научных основах аппаратурно-технологического оформления химических производств, их интенсификации, а также в создании новых производств неизменно возрастали. Так, еще в 30-х годах жидкостная экстракция использовалась в химической технологии в основном для препаративных и аналитических целей и не рассматривалась в литературе по процессам и аппаратам того времени как один из основных процессов. В настоящее время этот перспективный метод разделения жидких смесей получил значительное промышленное применение и для его осуществления разработана разнообразная аппаратура интенсивного действия. В качестве другого примера можно указать на процессы адсорбции для разделения газовых и парогазовых смесей. Со времени изобретения акад. Н.Д. Зелинским универсального угольного противогаза (1915 г.) адсорбция применялась в промышленности главным образом для рекуперации из воздуха производственных помещений паров летучих растворителей — бензола, ацетона и т.п. Еще двадцать пять лет тому назад процесс проводился только в громоздких периодически действующих аппаратах с неподвижным слоем зернистого адсорбента (активированного угля). В настоящее время успешно внедряются высокоэффективные непрерывно действующие адсорбционные установки с движущимся и кипящим слоем адсорбента, а процессы адсорбции широко применяются для выделения индивидуальных газов (этилена, метана, ацетилена и др.) из газовых смесей, обогащения слабых нитрозных газов и т.д. Адсорбционные процессы и аппараты получают дальнейшее развитие в связи с использованием для разделения газов пористых кристаллов (молекулярных, сит) и ионообменных смол (ионитов). Еще одним наглядным примером достижений науки о процессах и аппаратах является создание за последние годы высокопроизводительной аппаратуры с псевдоожиженным (кипящим) слоем зернистого материала, позволяющей интенсифицировать не только процессы адсорбции, но и ряд других гетерогенных процессов (сушка, кристаллизация и др.). Значительные теоретические и экспериментальные исследования проводятся по моделированию процессов и аппаратов на основе принципов теории подобия, изучению гидравлики и механизма массообмена в сложных двухфазных и многофазных системах. Химические аппараты и машины очень часто работают при больших скоростях рабочих сред, высоких давлениях, достигающих ~6×108 н/м2 (~6000 aт) и более, в широком диапазоне температур (примерно от -200 до +1000 °С) и в сильно агрессивных средах. Для таких условий необходимы аппараты надежной конструкции, изготовленные из разнообразных конструкционных материалов, включая легированные, кислотостойкие и жаропрочные стали, пластические массы, керамику и др. Необходимы также автоматизация работы химического оборудования и дистанционное управление им (особенно во вредных и взрывоопасных химических производствах). В связи с этим для внедрения достижений науки о процессах и аппаратах важное значение имеет развитие химического машиностроения.
Наука о процессах и аппаратах призвана сыграть большую роль в дальнейшем ускорении темпов развития химической промышленности и тем самым способствовать решению основной исторической задачи — созданию материально-технической базы в нашей стране. 3. Классификация основных процессов
Классификация основных процессов химической технологии может быть проведена на основе различных признаков. В зависимости от Основных законов, определяющих скорость процессов, различают: 1. Гидромеханические процессы, скорость которых определяется законами гидродинамики — науки о движении жидкостей и газов. К. этим процессам относятся перемещение жидкостей, сжатие и перемещение газов, разделение жидких и газовых неоднородных систем в поле сил тяжести (отстаивание), в поле центробежных сил (центрифугирование), а также под действием разности давлений при движении через пористый слой (фильтрование) и перемешивание жидкостей. 2. Тепловые процессы, протекающие со скоростью, определяемой законами теплопередачи — науки о способах распространения тепла. Такими процессами являются нагревание, охлаждение, выпаривание и конденсация паров. К тепловым процессам могут быть отнесены и процессы охлаждения до температур более низких, чем температура окружающей среды (процессы умеренного и глубокого охлаждения). Однако вследствие многих Скорость тепловых процессов в значительной степени зависит от гидродинамических условий (скоростей, режимов течения), при которых осуществляется перенос тепла между обменивающимися теплом средами. 3. Массообменные (диффузионные) процессы, характеризующиеся переносом одного или нескольких компонентов исходной смеси из одной фазы в другую через поверхность раздела фаз. Наиболее медленной и по этому обычно лимитирующей стадией массообменных процессов является молекулярная диффузия распределяемого вещества. К этой группе процессов, описываемых законами массопередачи, относятся абсорбция, перегонка (ректификация), экстракция из растворов, растворение и экстракция из пористых твердых тел, кристаллизация, адсорбция и сушка. Протекание процессов массообмена тесно связано с гидродинамическими условиями в фазах и на границе их раздела и часто — с сопутствующими массообмену процессами переноса тепла (теплообмена). 4. Химические (реакционные) процессы, которые протекают со скоростью, определяемой законами химической кинетики. Однако химическим реакциям обычно сопутствует перенос массы и энергии, и соответственно скорость химических процессов (особенно промышленных) зависит также от гидродинамических условий. Вследствие этого скорость реакций подчиняется законам макрокинетики и определяется наиболее медленным из последовательно протекающих процессов химического взаимодействия и диффузии. 5. Механические процессы, описываемые законами механики твердых тел. Эти процессы применяются в основном для подготовки исходных твердых материалов и обработки конечных твердых продуктов, а также для транспортирования кусковых и сыпучих материалов. К механическим процессам относятся измельчение, транспортирование, сортировка (классификация) и смешение твердых веществ. Особую группу механических процессов составляют процессы переработки химических продуктов в изделия — прессование, литье, экструзия и др. Эти процессы и машины для их проведения специфичны для производств синтетических материалов и рассматриваются в специальных курсах. По способу организации основные процессы химической технологии делятся на периодические и непрерывные. Периодические процессы проводятся в аппаратах, в которые через определенные промежутки времени загружаются исходные материалы; после их обработки из этих аппаратов выгружаются конечные продукты. По окончании разгрузки аппарата и его повторной загрузки процесс повторяется снова. Таким образом, периодический процесс характеризуется тем, что все его стадии протекают в одном месте (в одном аппарате), нов разное время. Непрерывные процессы осуществляются в проточных аппаратах. Поступление исходных материалов в аппарат и выгрузка конечных продуктов производятся одновременно и непрерывно. Следовательно, непрерывный процесс характеризуется тем, что все его стадии протекают одновременно, но разобщены в пространстве, т.е. осуществляется в различных частях одного аппарата или же в различных аппаратах, составляющих данную установку. Известны также комбинированные процессы. К ним относятся непрерывные процессы, отдельные стадии которых проводятся периодически, либо периодические процессы, одна или несколько стадий, которых протекают непрерывно. Основные преимущества непрерывных процессов по сравнению с периодическими следующие: 1) нет перерывов в выпуске конечных продуктов, т.е. отсутствуют затраты времени на загрузку аппаратуры исходными материалами и выгрузку из нее продукции; 2) более легкое автоматическое регулирование и возможность более полной механизации; 3) устойчивость режимов проведения и соответственно большая стабильность качества получаемых продуктов; 4) большая компактность оборудования, что сокращает капитальные затраты и эксплуатационные расходы (на ремонты и пр.); 5) более полное использование подводимого (или отводимого) тепла при отсутствии перерывов в работе аппаратов; возможность использования (рекуперации) отходящего тепла. Непрерывные процессы отличаются от периодических по распределению времени пребывания частиц среды в аппарате. В периодически действующем аппарате все частицы среды находятся одинаковое время, в то время как в непрерывно действующем аппарате времена пребывания их могут значительно различаться. По распределению времен пребывания различают две теоретические (предельные) модели аппаратов непрерывного действия: идеального вытеснения и идеального смешения. В аппаратах идеального вытеснения все частицы движутся в заданном направлении; не перемешиваясь с движущимися впереди и сзади частицами и полностью вытесняя находящиеся впереди частицы потока. Все частицы равномерно распределены по площади поперечного сечения такого аппарата и действуют при движении подобно твердому поршню. Время пребывания всех частиц в аппарате идеального вытеснения одинаково. В аппаратах идеального смешения поступающие частицы сразу же полностью перемешиваются с находящимися там частицами, т.е. равномерно распределяются в объеме аппарата. В результате во всех точках объема мгновенно выравниваются значения параметров, характеризующих процесс. Время пребывания частиц в аппарате идеального смешения неодинаково. Реальные непрерывно действующие аппараты представляют собой аппараты промежуточного типа. В них время пребывания частиц распределяется несколько более равномерно, чем в аппаратах идеального смешения, но никогда не выравнивается, как в аппаратах идеального вытеснения. Более подробно вопросы структуры потоков в аппаратах и их влияния на протекание процессов рассмотрены в дальнейшем. Процессы могут быть также классифицированы в зависимости от изменения их параметров (скоростей, температур, концентраций и др.) во времени. По этому признаку процессы делятся на установившиеся (стационарные) и не установившиеся (нестационарные, или переходные). В установившихся процессах значения каждого из параметров, характеризующих процесс, постоянны во времени, а в неустановившихся — переменны, т.е. являются функциями не только положения каждой точки в пространстве, но и времени. Анализ характеристик неустановившихся процессов представляет наибольший интерес для целей автоматического регулирования. В химической технологии неустановившимися являются менее распространенные периодические процессы. Для непрерывных процессов изменение параметров во времени должно учитываться при изменении режима работы и в период пуска установок, однако этот период является кратковременным, и в расчете им пренебрегают.
4. Общие принципы анализа и расчета процессов и аппаратов
Расчеты процессов и аппаратов обычно имеют следующие основные цели: а) определение условий предельного, или равновесного, состояния системы; б) вычисление расходов исходных материалов и количеств получаемых продуктов, а также количеств потребной энергии (тепла) и расхода теплоносителей; в) определение оптимальных режимов работы и соответствующей им рабочей поверхности или рабочего объема аппаратов; г) вычисление основных размеров аппаратов. Эти задачи определяют содержание и последовательность расчетов. Исходным этапом являются расчет и анализ статики процесса, т.е. рассмотрение данных о равновесии, на основе которых определяют направление и возможные пределы осуществления процесса. Пользуясь этими данными, находят предельные значения параметров процесса, необходимые для вычисления его движущей силы. Затем составляют материальные и энергетические балансы, исходя из законов сохранения массы и энергии. Последующий этап представляет собой расчет кинетики процесса, определяющей его скорость. По данным о скорости и движущей силе при выбранном оптимальном режиме работы аппарата находят его рабочую поверхность или объем. Зная поверхность или объем, определяют основные размеры аппарата. Материальный баланс. По закону сохранения массы масса поступающих веществ должна быть ра5вна массе веществ , получаемых в результате проведения процесса, т.е. без учета потерь + . Однако в практических условиях неизбежны необратимые потери веществ, обозначая которые через находим следующее общее выражение материального баланса: = + (I,1) Материальный баланс составляют для процесса в целом или для отдельных его стадий. Баланс может быть составлен для системы в целом или по одному из входящих в нее компонентов. Так, материальный баланс процесса сушки составляют как по всему влажному материалу, поступающему на сушку, так и по одному из его компонентов — массе абсолютно сухого вещества или массе влаги, содержащейся в высушиваемом материале. Баланс составляют либо за единицу времени, например за 1 ч, за сутки (или за одну операцию в периодическом процессе) либо в расчете на единицу массы исходных или конечных продуктов. На основе материального баланса определяют выход продукта, под которым понимают выраженное в процентах отношение полученного количества (массы) продукта к максимальному, т.е. теоретически возможному. Иногда понятию выход придают иной смысл, рассчитывая условно выход как массу продукта, отнесенную к единице массы затраченного сырья. При этом в случае использования нескольких видов сырья выход выражают по отношению к какому-либо одному из них. Практический расход исходных материалов обычно превышает теоретический вследствие того, что химические реакции не протекают до конца, происходят потери реагирующих веществ (через неплотности аппаратуры и т.д.). Энергетический баланс. Этот баланс составляют на основе закона сохранения энергии, согласно которому количество энергии, введенной в процесс, равно количеству выделившейся энергии, т.е. приход энергии равен ее расходу. Проведение химико-технологических процессов обычно связано с затратой различных видов энергии — механической, электрической и др. Эти процессы часто сопровождаются изменением энтальпии системы, в частности, вследствие изменения агрегатного состояния веществ (испарения, конденсации, плавления и т.д.). В химических процессах очень большое значение может иметь тепловой эффект протекающих реакций. Частью энергетического баланса является тепловой баланс, который в общем виде выражается уравнением = + (I,2) При этом вводимое тепло = Q1 + Q2 + Q3 где Q1 — тепло, вводимое с исходными веществами; Q2 — тепло, подводимое извне, например с теплоносителем, обогревающим аппарат; Q3 — тепловой эффект физических или химических превращений (если тепло в ходе процесса поглощается, то этот член входит с отрицательным знаком). Отводимое тепло SQк складывается из тепла, удаляющегося с конечными продуктами и отводимого с теплоносителем (например, с охлаждающим агентом). В энергетическом балансе, кроме тепла, учитываются приход и расход всех видов энергии, например затраты механической энергии на перемещение жидкостей или сжатие и транспортирование газов. На основании теплового баланса находят расход водяного пара, воды и других теплоносителей, а по данным энергетического баланса — общий расход энергии на осуществление процесса. Интенсивность процессов и аппаратов. Для анализа и расчета процессов химической технологии. Необходимо, кроме данных материального и энергетического балансов, знать интенсивность процессов и аппаратов. Все указанные выше основные процессы (гидродинамические, тепловые, массообменные и др.) могут протекать только под действием некоторой движущей силы, которая для гидромеханических процессов определяется разностью давлений, для теплообменных – разностью температур, для массообменных – разностью концентраций вещества и т.д. Выражения движущей силы для различных видов процессов будут рассмотрены в соответствующих главах курса. В первом приближении можно считать, что результат процесса, характеризуемый, например, массой М. перенесенного вещества или количеством переданного тепла, пропорционален движущей силе (обозначаемой в общем виде через D), времени t и некоторой величине A, к которой относят интенсивность процесса. Такой величиной может быть рабочая поверхность, через которую происходит перенос энергии или массы, рабочий объем, в котором осуществляется процесс, и т.п. Следовательно, уравнение любого процесса может быть представлено в общем виде: M = KA tD (I,3) Коэффициент пропорциональности К в уравнении характеризует скорость процесса и, таким образом, представляет собой кинетический коэффициент, или коэффициент скорости процесса (коэффициент теплопередачи, коэффициент массопередачи и т.д.). Коэффициент К отражает влияние всех факторов, не учтенных величинами, входящими в правую часть уравнения (I,3), а также все отклонения реального процесса от этой упрощенной зависимости. Под интенсивностью процесса понимают результат его, отнесенный к единице времени и единице величины А, т.е. величину М/А t, например энергию или массу, перешедшую в единицу времени через единицу рабочей поверхности (либо перенесенной из одной фаз в единице рабочего объема). Из уравнения следует, что (I,4) Соответственно величину К можно рассматривать как меру интенсивности процесса — интенсивность, отнесенную к единице движущей силы. Интенсивность процесса всегда пропорциональна движущей силе D и обратно пропорциональна сопротивлению R, которое является величиной, обратной кинетическому коэффициенту (например, гидравлическое сопротивление, термическое сопротивление, сопротивление массопередаче и т.д.). Таким образом, уравнение (I,3) может быть выражено также в форме (I,5) Из уравнения (I,3) или (I,5) находят необходимую рабочую поверхность или рабочий объем аппарата по известным значениям остальных величин, входящих в уравнение, или определяют результат процесса при заданной поверхности (объеме). От интенсивности процесса следует отличать объемную интенсивность аппарата — интенсивность, отнесенную к единице его общего объема. С увеличением объемной интенсивности уменьшаются размеры аппарата, и снижается расход материалов на его изготовление. Однако объемная интенсивность может лишь до определенной степени служить мерой совершенства аппарата. Это объясняется тем, что объемная интенсивность аппарата связана с интенсивностью процесса, но с увеличением коэффициента скорости процесса его интенсивность обычно возрастает лишь до известного предела. При оценке конструкции аппарата или режима его работы решающее значение должны иметь технико-экономические характеристики данного аппарата. Оптимальным будет такой аппарат (или такой режим его работы), который обеспечит заданный результат с наименьшими затратами. Определение основных размеров аппаратов. Пользуясь уравнением (I,3), вычисляют основные размеры непрерывно действующего аппарата. Если известен объем Q среды, протекающей через аппарат в единицу времени, и задана или принята ее линейная скорость w, то площадь поперечного сечения S аппарата находят из следующего соотношения: (I,6) По величине S определяют один из основных размеров аппарата, например для аппарата цилиндрической формы — его диаметр D. Другим основным размером является рабочая высота (или длина) Н аппарата. Из уравнения (I,3) находят рабочий объем аппарата (если А = V) или поверхность F, требуемую для проведения процесса. Зная F и пользуясь зависимостью F = aV, где а — поверхность, приходящаяся на единицу объема аппарата (удельная поверхность), рассчитывают его рабочий объем. По величине V определяют высоту Н, применяя соотношение V = SH. Рабочий объем V периодически действующего аппарата определяют как произведение заданной производительности (например, Q м8/сек) и периода процесса t сек, включающего продолжительность самого процесса, а также время, затрачиваемое на загрузку, выгрузку и другие вспомогательные операции: V=Qt (I,7) Моделирование и оптимизация процессов и аппаратов. Исследование процессов и аппаратов в масштабах и условиях промышленного производства является, как правило, сложным, длительным и дорогостоящим. В связи с этим большое значение имеет моделирование — изучение закономерностей процессов на моделях при условиях, допускающих распространение полученных результатов на все процессы, подобные изученному, независимо от масштаба аппарата. Общие принципы моделирования вытекают из теории подобия. Согласно требованиям этой теории, должны соблюдаться следующие правила моделирования: 1) необходимо, чтобы процессы в модели и аппарате натурального размера (оригинале) описывались одинаковыми дифференциальными уравнениями; 2) модель должна быть геометрически подобна оригиналу; 3) численные значения начальных и граничных условий, выраженных в безразмерной форме, для модели и оригинала должны быть равны; 4) необходимо, чтобы все безразмерные комплексы физических и геометрических величин, влияющих на процесс (критерии подобия), были равны во всех сходственных точках модели и оригинала. Если последнее требование невыполнимо и протекание процесса практически мало зависит от тех или иных критериев подобия, то равенством их в модели и оригинале пренебрегают, проводя приближенное моделирование. Моделирование процессов можно также осуществлять на основе математической аналогии — одинаковой формы уравнений, описывающих физически различные явления. При использовании электронных вычислительных машин математическое моделирование позволяет значительно ускорить исследование наиболее сложных процессов химической технологии. Заключительным этапом моделирования процессов является их оптимизация — выбор наилучших, или оптимальных, условий проведения процесса. Определение этих условий связано с выбором критерия оптимизации, который может зависеть от оптимальных значений ряда параметров (например, температуры, давления, степени извлечения и др.). Между указанными параметрами обычно существует сложная взаимосвязь, что сильно затрудняет выбор единого критерия, всесторонне характеризующего эффективность процесса. Задача сводится к поиску экстремального значения (минимума или максимума) целевой функции, выражающей зависимость величины выбранного критерия оптимизации от влияющих на него факторов. Основные характеристики процесса, как правило, связаны между собой так, что возрастание его эффективности по одной из них снижает в той или иной степени эффективность данного процесса по другим характеристикам. Так, например, в любых процессах разделения смесей (ректификация, экстракция, грохочение и др.) полное разделение недостижимо. Качество же конечного продукта, определяемое содержанием в нем целевого компонента (или нескольких компонентов), улучшается с увеличением полноты разделения. Однако при этом процесс удорожается, а производительность аппаратуры уменьшается. В связи с этим задача оптимизации сводится, по существу, к нахождению наиболее выгодного компромисса между значениями параметров, антагонистически влияющих на процесс. Наиболее универсальны экономические критерии оптимизации, интегрально отражающие (в стоимостном выражении) не только основные технические характеристики, подобные указанным выше, но и затраты на энергию, рабочую силу и т.д. Принцип нахождения экономического оптимума для отдельных основных процессов изложен в соответствующих главах курса. Однако необходимо отметить, что оптимизация на основе экономических критериев связана с наличием гибкой системы цен, оперативно отражающих изменение стоимости продуктов (в том числе промежуточных) с развитием науки и технического прогресса. В зависимости от конкретных условий применяют также технологические, термодинамические, статистические и другие критерии оптимизации. Для оптимизации процессов широко используют кибернетические методы и при экспериментальном изучении — статистические методы планирования экспериментов, позволяющие на основе предварительного математического анализа сократить число опытов до минимально необходимого. Основные математические методы оптимизации (классический математический анализ, вариационное исчисление, линейное и динамическое программирование, принцип максимума и др.) описываются в специальной литературе. 5. Различные системы единиц измерения физических величин
Числовые значения величин, получаемые в результате технических расчетов, зависят от выбора единиц измерения. Поэтому необходимо правильно учитывать единицы измерения величин, входящих в расчетные формулы и уравнения. Для выражения величин используют различные системы единиц измерения, состоящие из основных (независимых) и производных единиц. Производные единицы выражаются через основные единицы. Кроме того, в расчетной практике употребляют и некоторые внесистемные единицы измерения. Согласно государственному стандарту (ГОСТ 9867-61), в нашей стране принята как предпочтительная Международная система единиц (СИ). Переход на единую и универсальную систему единиц СИ обеспечивает единообразие измерений, повышает их точность, а также упрощает некоторые формулы. Из основных единиц СИ в расчетах по процессам и аппаратам используют четыре единицы: метр (м), килограмм (кг), секунду (сек) и градус Кельвина (°К). Из первых трех единиц, совпадающих с основными единицами системы МКС, образуются все производные механические единицы, а на основе °К — производные единицы для измерения тепловых величин. Международная система единиц (СИ) призвана заменять д
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|