Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

История возникновения математической логики

Оглавление

 

Введение

§1. История возникновения математической логики

§2. Применение математической логики

§3. Математическая логика в технике

§4. Математическая логика в криптографии

§5. Математическая логика в программировании

Заключение

Список используемой литературы

математическое обозначение криптография логика программирование

 


 

Введение

 

Логика <http://posobie-mii.narod.ru/Glava12.htm> - это наука, изучающая формы и законы мышления, закономерности мыслительного процесса. Слово «логика» произошло от греческого logos, что означает слово, понятие, рассуждение, разум. Законы и правила формальной логики необходимо знать для построения правильных рассуждений.

Логические знания чрезвычайно важны для повышения эффективности мыслительной деятельности человека и предотвращения логических ошибок. Согласно основному принципу логики, правильность рассуждения (вывода) определяется только его логической формой (структурой) и не зависит от конкретного содержания входящих в него утверждений.

Например, рассуждения «Все люди смертны. Сократ - человек.

Следовательно, Сократ смертен» и «Все металлы электропроводны. Медь - металл. С

ледовательно, медь электропроводна» имеют одинаковую логическую структуру, называемую силлогизмом. Отличительная особенность правильного вывода состоит в том, что из истинных исходных утверждений всегда получаются истинные заключения. Это позволяет из одних истин получать другие с помощью только рассуждения, разума и без обращения к опыту. Логика состоит из большого числа логических систем, описывающих отдельные типы содержательных рассуждений.

Эти системы принято делить на классическую логику, включающую классические логику высказываний и логику предикатов, и неклассическую логику, в которую входят модальная логика, многозначная логика, деонтическая логика, логика времени, паранепротиворечивая логика, парафальсифицирующая логика и др. Все эти частные системы, пользующиеся одними и теми же методами исследования при описании отдельных логических процессов, соединяясь вместе, и образуют логику как единую науку. Для любой логики характерно отвлечение от конкретного содержания высказываний или умозаключений и оперирование только их формальным содержанием, использование единого языка символов и формул.

 


 

История возникновения математической логики

 

Математическая логика тесно связана с логикой и обязана ей своим возникновением. Основы логики, науки о законах и формах человеческого мышления (отсюда одно из ее названий - формальная логика), были заложены величайшим древнегреческим философом Аристотелем (384-322 гг. до н. э.), который в своих трактатах обстоятельно исследовал терминологию логики, подробно разобрал теорию умозаключений и доказательств, описал ряд логических операций, сформулировал основные законы мышления, в том числе законы противоречия и исключения третьего. Вклад Аристотеля в логику весьма велик, недаром другое ее название - Аристотелева логика. Еще сам Аристотель заметил, что между созданной им наукой и математикой (тогда она именовалась арифметикой) много общего. Он пытался соединить две эти науки, а именно свести размышление, или, вернее, умозаключение, к вычислению на основании исходных положений. В одном из своих трактатов Аристотель вплотную приблизился к одному из разделов математической логики - теории доказательств.

В дальнейшем многие философы и математики развивали отдельные положения логики и иногда даже намечали контуры современного исчисления высказываний, но ближе всех к созданию математической логики подошел уже во второй половине XVII века выдающийся немецкий ученый Готфрид Вильгельм Лейбниц (1646 - 1716), указавший пути для перевода логики «из словесного царства, полного неопределенностей, в царство математики, где отношения между объектами или высказываниями определяются совершенно точно». Лейбниц надеялся даже, что в будущем философы, вместо того чтобы бесплодно спорить, станут брать бумагу и вычислять, кто из них прав. При этом в своих работах Лейбниц затрагивал и двоичную систему счисления.

Следует отметить, что идея использования двух символов для кодирования информации очень стара. Австралийские аборигены считали двойками, некоторые племена охотников-сборщиков Новой Гвинеи и Южной Америки тоже пользовались двоичной системой счета. В некоторых африканских племенах передают сообщения с помощью барабанов в виде комбинаций звонких и глухих ударов. Знакомый всем пример двухсимвольного кодирования - азбука Морзе, где буквы алфавита представлены определенными сочетаниями точек и тире.

После Лейбница исследования в этой области вели многие выдающиеся ученые, однако настоящий успех пришел здесь к английскому математику-самоучке Джорджу Булю (1815-1864), целеустремленность которого не знала границ. Материальное положение родителей Джорджа (отец которого был сапожным мастером) позволило ему окончить лишь начальную школу для бедняков. Спустя какое-то время Буль, сменив несколько профессий, открыл маленькую школу, где сам преподавал. Он много времени уделял самообразованию и вскоре увлекся идеями символической логики. В 1847 году Буль опубликовал статью «Математический анализ логики, или Опыт исчисления дедуктивных умозаключений», а в 1854 году появился главный его труд «Исследование законов мышления, на которых основаны математические теории логики и вероятностей».

Буль изобрел своеобразную алгебру - систему обозначений и правил, применимую ко всевозможным объектам, от чисел и букв до предложений. Пользуясь этой системой, он мог закодировать высказывания (утверждения, истинность или ложность которых требовалось доказать) с помощью символов своего языка, а затем манипулировать ими, подобно тому, как в математике манипулируют числами. Основными операциями булевой алгебры являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ).

Через некоторое время стало понятно, что система Буля хорошо подходит для описания электрических переключательных схем. Ток в цепи может либо протекать, либо отсутствовать, подобно тому, как утверждение может быть либо истинным, либо ложным. А еще несколько десятилетий спустя, уже в XX столетии, ученые объединили созданный Джорджем Булем математический аппарат с двоичной системой счисления, заложив тем самым основы для разработки цифрового электронного компьютера.

Отдельные положения работ Буля в той или иной мере затрагивались и до, и после него другими математиками и логиками. Однако сегодня в данной области именно труды Джорджа Буля причисляются к математической классике, а сам он по праву считается основателем математической логики и тем более важнейших ее разделов - алгебры логики (булевой алгебры) и алгебры высказываний.

Большой вклад в развитие логики внесли и русские ученые П.С. Порецкий (1846-1907), И.И. Жегалкин (1869-1947).

В XX веке огромную роль в развитии математической логики сыграл Д. Гильберт (1862-1943), предложивший программу формализации математики, связанную с разработкой оснований самой математики. Наконец, в последние десятилетия XX века бурное развитие математической логики было обусловлено развитием теории алгоритмов и алгоритмических языков, теории автоматов, теории графов (С.К. Клини, А. Черч, А.А Марков, П.С. Новиков, Гегель и многие другие).

Гегель (1770-1831) весьма иронично отзывался о законе противоречия и законе исключенного третьего. Последний он представлял, в частности, в такой форме: "Дух является зеленым или не является зеленым", и задавал "каверзный" вопрос: какое из этих двух утверждений истинно? Ответ на этот вопрос не представляет, однако, труда. Ни одно из двух утверждений: "Дух зеленый" и "Дух не зеленый" не является истинным, поскольку оба они бессмысленны. Закон исключенного третьего приложим только к осмысленным высказываниям. Только они могут быть истинными или ложными. Бессмысленное же не истинно и не ложно. Гегелевская критика логических законов опиралась, как это нередко бывает, на придание им того смысла, которого у них нет, и приписывание им тех функций, к которым они не имеют отношения. Случай с критикой закона исключенного третьего - один из примеров такого подхода. Критика закона исключенного третьего (Л.Бауэр) привела к созданию нового направления в логике - интуиционистской логики. В последней не принимается этот закон и отбрасываются все те способы рассуждения, которые с ним связаны. Среди отброшенных, например, оказывается доказательство путем приведения к противоречию, или абсурду.

Обращаю внимание на суть любой критики законов формальной логики: все сторонники концепции "расширения" формальной логики сдвигают центр тяжести логических исследований с изучения правильных способов рассуждения на разработку каких-либо конкретных проблем: теории познания, причинности, индукции и т.д. В логику вводятся темы, интересные и важные сами по себе, но не имеющие отношения к собственно формальной логике, как к набору приемов правильного мышления. Закон исключенного третьего, не рассматривая самих противоречий, запрещает признавать одновременно истинным или одновременно ложным два противоречащих друг другу суждения. В этом и состоит его смысл.

Вывод: нельзя уклоняться от признания истинным одного из двух противоречащих друг другу высказывай и искать нечто третье между ними.

Результат применения: достигается однозначность логического мышления.

Четвертый закон - закон достаточного основания

Формулировка: всякая истинная мысль имеет достаточное основание.

Комментарий: Этот закон фактически заявляет то, что все мысли которые можно объяснить, считаются истинными, а те которые объяснить нельзя - ложными. В логике высказываний этот закон формулы не имеет, так как он имеет содержательный характер. На этом стоит остановиться несколько подробней:

Достаточным, т. е. действительным, невымышленным основанием наших мыслей может являться индивидуальная практика. Действительно, истинность некоторых суждений подтверждается путем их непосредственного сопоставления с фактами действительности (Пример: "[Истинно, что]Идет дождь", "[Является ложью то, что]Я был в Акапулько"). Но личный опыт ограничен. Поэтому в реальной деятельности всегда приходится опираться на опыт других людей. Благодаря развитию научных знаний субъект использует в качестве оснований своих мыслей опыт предшественников, закрепленный в законах и аксиомах науки, в принципах и положениях, существующих в любой области человеческой деятельности. Для подтверждения какого-либо частного случая нет необходимости обращаться к его практической проверке, обосновывать его при помощи личного опыта. Если, например, мне известен закон Архимеда, то мне совсем не обязательно искать ванну с водой, чтобы, поместив туда предмет, выяснить, сколько он потерял в весе. Закон Архимеда будет достаточным основанием для подтверждения этого частного случая.

Целью науки является не только добывание знания, но и его передача. Именно поэтому недопустимы никакие логические огрехи в формальном представлении уже добытого знания. Таким образом - знание должно быть логически контролируемым. Именно это оптимально для его сохранения, передачи и развития. И именно поэтому научное знание, как совокупность уже доказанных логических предложений, может служить основанием для последующих доказательных рассуждений.

Закон достаточного основания фактически сводится к следующему требованию: "всякое суждение, прежде чем быть принятым за истину, должно быть обосновано". Таким образом из этого закона вытекает, что при правильном рассуждении ничто не должно приниматься просто так, на веру. В каждом случае каждого утверждения следует указывать основания, в силу которых оно считается истинным. Как видим - закон достаточного основания изначально выступает, как методологический принцип, обеспечивающий способность мышления поставлять основания к последующим рассуждениям. Ведь все, что уже корректно доказано, можно положить в основу последующим доказательствам.

Вывод: достаточным основанием какой либо мысли может быть любая другая, уже проверенная и признанная истинной мысль, из которой вытекает истинность рассматриваемой мысли.

Результат применения: закон обеспечивает обоснованность мышления. Во всех случаях, когда мы утверждаем что-либо, мы обязаны доказать свою правоту, т.е. привести достаточные основания, подтверждающие истинность наших мыслей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...