Национальный исследовательский Томский политехнический университет
Стр 1 из 2Следующая ⇒ Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Томский политехнический университет Институт ИПР Направление подготовки (специальность): Нефтегазовое дело Кафедра ТХНГ
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе по дисциплине: Эксплуатация насосных и компрессорных станций на тему Эксплуатация оборудования нефтеперекачивающей станции и расчет её основных характеристик
Томск 2015 г.
Задание на выполнение курсового проекта
1. Тема курсового проекта:Эксплуатация оборудования нефтеперекачивающей станции и расчет её основных характеристик 2. Срок сдачи студентом готовой работы 3. Исходные данные к работе: - годовая производительность, Q, м3/год, Q = 10 млрд. м3 в год; - абсолютное рабочее давление в газопроводе, Р, МПа, Р = 5,8 МПа; - абсолютное давление нагнетания КС Нюксеницкая, Р1, МПа, Р1 = 5,8 МПа; - температура газа на выходе КС Нюксеницкая, Т1, К, Т1 = 302 К; - протяженность участка между КС, L, км, L = 155 км; - среднегодовая температура окружающего воздуха в районе КС Нюксеницкая, t возд1, °С, t возд =1,7°С; - среднегодовая температура окружающего воздуха КС Юбилейная, t воз2, °С, t возд2 = 1,7°С; - среднегодовая температура грунта на участке, tгр, °С, tгр = 6,0°С; - высота расположения над уровнем моря КС Нюксеницкая, h1, м, h1 = 140 м; - высота расположения над уровнем моря КС, h2 Юбилейная, м, h2 = 130 м; - состав транспортируемого газа (по объёму), %: СН4 = 87; С2Н6 =6,2; С3Н8 = 3,4; С4Н10 = 1,98; С5Н12 =0,76; N2 = 1,1; СО2 = 0,12. Цель курсового проекта - углубление и закрепление знаний, полученных в процессе изучения дисциплины: «Эксплуатация насосных и компрессорных станций».
Содержание
Введение Задание. Исходные данные . Теоретическая часть Магистральный трубопровод Компрессорные станции Пылеуловители Охлаждение газа на компрессорных станциях . Гидравлический расчет нефтепровода 2.1 Расстановка насосных станций Определение объема резервуарных парков в системе магистральных нефтепроводов 3. Расчет газопровода Определение теплофизических свойств транспортируемого газа 3.2 Выбор труб и расчет толщины стенки Расчет линейного участка КС Нюксеницкая - КС Юбилейная Расчет пылеуловителей КС Юбилейная Расчет КС Юбилейная Расчет АВО газа КС Юбилейная Заключение Список рекомендуемой литературы
Введение
Газовая промышленность является одной из важнейших составных частей топливно-энергетического комплекса России. Поставка газа потребителю - задача существующей Единой системы газоснабжения (ЕСГ) страны. ООО «Газпром Трансгаз Ухта» предусматривает в некоторых регионах параллельную прокладку нескольких ниток магистральных газопроводов и, как следствие этого, сооружение много цеховых газокомпрессорных станций. Система магистрального многониточного газопровода Пунга-Ухта-Торжок, проходящая по территории Республики Коми, не только позволяет полностью обеспечивать республику газом, но и дает дополнительный приток природного газа в центральную часть России [1].
1. Теоретическая часть
Магистральный трубопровод
Магистральными называют трубопроводы, по которым нефть, нефтепродукты, природные или искусственные газы (в газообразном или сжиженном состоянии), вода перекачиваются от мест добычи, переработки, забора (начальная точка трубопровода) к местам потребления (конечная точка). Начальная и конечная точки трубопровода обычно находятся в местах, где сосредоточены основные источники получения транспортируемого продукта (начальная) и потребители его (конечная точка).
Магистральный газопровод в общем случае включает следующие группы сооружений: головные, линейные (собственно газопровод), компрессорные станции (КС), газораспределительные станции (ГРС) в конце трубопровода, подземные хранилища газа (ПХГ), объекты связи (высокочастотной и селекторной), системы электрозащиты сооружений трубопровода от коррозии, вспомогательные сооружения, обеспечивающие бесперебойную работу газопровода (линии электропередач, водозаборные устройства и водопроводы, канализация и т.п.), объекты ремонтно-эксплуатационной службы (РЭП), административные и жилищно-бытовые сооружения. Головными называют сооружения, на которых подготавливают газ к дальнему транспорту. Комплекс головных сооружений (ГС) зависит от состава и давления газа, добываемого на промысле и поступающего на газосборный пункт. Как правило, в комплекс ГС входят установки по очистке газа от механических примесей, влаги, установки отделения от газа серы и высокоценных компонентов (гелия и др.). К головным сооружениям относятся и КС в начальной точке газопровода, на территории которой обычно размещается комплект перечисленных сооружений. Газ, попадающий на головные сооружения магистрального газопровода со сборных пунктов промысла, содержит механические примеси (песок, пыль, металлическую окалину и др.) и жидкости (пластовую воду, конденсат, масло). Перед подачей в газопровод его очищают и осушают, так как без предварительной подготовки он будет засорять трубопровод, вызывать преждевременный износ запорной и регулирующей арматуры, нарушать работу контрольно-измерительных приборов. Твердые частицы, попадая в компрессорные установки, ускоряют износ поршневых колец, клапанов и цилиндров. В центробежных нагнетателях они ускоряют износ рабочих колес и самого корпуса нагнетателя. Жидкие примеси, скапливаясь в пониженных местах газопровода, будут сужать его сечение, способствовать образованию гидратных и гидравлических пробок [2]. Для очистки газа от механических примесей используют горизонтальные и вертикальные сепараторы, цилиндрические масляные и циклонные пылеуловители. В сепараторах отделяется примесь от газа. По принципу действия сепараторы делятся на объемные (гравитационные) и циклонные. В гравитационных аппаратах примеси оседают вследствие резкого изменения направления потока газа при одновременном уменьшении скорости его движения. В циклонных установках используются центробежные силы инерции, возникающие в камере при входе газа по тангенциальному вводу.
Масляные цилиндрические пылеуловители представляют собой вертикальные цилиндрические сосуды со сферическими днищами. На головных сооружениях магистральных газопроводов их устанавливают группами в зависимости от необходимой пропускной способности. Размеры пылеуловителей: по диаметру от 1000 до 2400 мм, по высоте от 5,8 до 8,8 м. В пылеуловителе имеются устройства, обеспечивающие контактирование газа с маслом и отделение твердых и жидких частиц от газа. Оседающий в пылеуловителе шлам периодически удаляют, загрязненное масло заменяют. Осушку газа на головных сооружениях осуществляют двумя способами: абсорбционным (с жидким поглотителем) и адсорбционным (с твердыми поглотителями). Газ после пылеуловителей попадает в абсорберы, где очищается от взвешенных капель жидкости и водяных паров путем активного контакта с абсорбентом, чаще всего диэтиленгликолем. В последнее время, определенное значение приобретает осушка газа твердыми поглотителями. В качестве адсорбентов применяют активированную окись алюминия, флюорит, боксит, силикагель или другие реагенты. Установка такой осушки состоит из группы адсорберов (не менее двух), подогревателя газа и теплообменников. Влажный газ после очистки от пыли поступает в адсорбер, где проходит через один или несколько слоев адсорбента. Периодически часть адсорберов отключают от системы для регенерации адсорбента Для отделения от газа конденсата и воды с успехом используют низкотемпературную сепарацию, особенно при отборе газа из месторождений с высоким пластовым давлением. Газ из скважин без дросселирования подводят к установке и направляют во влагосборник для предварительной очистки. Затем в теплообменнике происходит его охлаждение холодным газом из сепаратора и выделение части жидкости в гидроуловитель. Далее, пройдя через штуцер, газ дросселируется, температура его снижается, и в следующем сепараторе оставшаяся жидкость выделяется. В процессе отбора влаги в газ вводят метанол или диэтиленгликоль во избежание образования кристаллогидратов. Наиболее перспективной в настоящее время считается низкотемпературная сепарация с впрыском ингибитора гидратообразования непосредственно в поток газа. Недостатком такой схемы является использование в ней громоздких и металлоемких теплообменников типа «труба в трубе». Более эффективны кожухотрубные теплообменники с впрыском диэтиленгликоля.
Для улавливания жидкости и твердых примесей, оставшихся в газе после очистных устройств, на головном участке магистрального газопровода врезают конденсатосборники и предусматривают дренажные устройства. Практика показала, что наиболее эффективно это делать на восходящих участках газопровода. Чтобы обнаруживать и предотвращать возможные утечки газа, перед подачей в магистральный газопровод ему придают специфический запах с помощью одорантов - веществ, обладающих резким запахом (этилмеркаптан, сульфан, метилмеркаптан, пропилмеркаптан и др.). Примерная среднегодовая норма расхода одоранта - 16 г на 1000 м3 газа. Одорированный газ достаточно длительное время сохраняет приобретенное качество и доходит к потребителям почти с начальной степенью одоризации. Применяют одоризационные установки барботажные, с капельным одоризатором и др. В последнее время широко используются автоматические одоризационные установки. Учитывая, что одоранты - легкоиспаряющиеся горючие жидкости, при обращении с ними требуется строгое соблюдение мер безопасности. Головная КС отличается от линейной тем, что на ее территории размещены все установки по подготовке газа к дальней перекачке. Линейная часть газопровода представляет собой непрерывную трубу между отдельными КС, пересекающую на всем протяжении от начальной до конечной точек множество естественных и искусственных препятствий. [1]
1.2 Компрессорные станции
Компрессорные станции (КС) предназначены для повышения давления и перекачки газа по магистральному газопроводу (МГ). Они служат управляющим элементом в комплексе сооружений, входящих в МГ. Практически именно параметрами работы КС определяется режим работы газопровода. Наличие КС позволяет регулировать режим работы газопровода при колебаниях потребления газа, максимально использовать аккумулирующую способность газопровода.
В газовой промышленности в качестве газоперекачивающих агрегатов (ГПА) на МГ применяют центробежные нагнетатели с приводом от газовой турбины или электродвигателя [1].
1.3 Пылеуловители
Газ от пыли на КС очищают с помощью пылеуловителей, которые выпускаются трёх типов: центробежные циклонные, центробежные мультициклонные и жидкостные (вертикальные масляные). Вертикальные масляные пылеуловители двух размеров 1600 мм и 2400 мм. Промывочная жидкость керосин, лигроин, соляровое масло. Температура застывания, менее чем на 10°С, ниже температуры газа. Очистка газа происходит за счёт уменьшения скорости потока и контакта его с маслом. Пылеуловитель - цилиндрический сосуд высокого давления, внутренняя полость разделена на 3 секции: нижнюю промывочную А, в которой все время поддерживается установленный уровень масла; среднюю осадительную Б, где газ освобождается от взвешенных частиц масла; верхнюю отбойную В, в которой происходит окончательная очистка газа от уносимых частиц масла. Нижняя секция снабжена контактными трубками, которые имеют внизу продольные прорези-щели для создания завихрения потока. В верхней отбойной секции имеется скрубберная насадка состоящая из швеллерных или жалюзийных секций с волнообразными профилями. Процесс очистки газа в пылеуловителе происходит следующим образом: поступающий в пылеуловитель через патрубок газ ударяется о козырек и соприкасается с поверхностью масла, после чего с большой скоростью устремляется по контактным трубам, захватывая с собой частицы масла. В осадительной камере Б скорость потока газа резко снижается, в результате чего происходит осаждение механических частиц и частиц жидкости. Осаждённые частицы по дренажным трубкам стекают в секцию аппарата А. После осадительной камеры Б газ, освобождённый от более крупных частиц, поступает в отбойную секцию, где происходит окончательная его очистка. Осевший на отбойной секции шлам стекает по дренажным трубкам в нижнюю камеру. Очищенный газ через выхлопной патрубок поступает на редукцирование. Загрязнённое масло удаляется продувкой через трубу в отстойник масла. Полная очистка происходит через люк. Чистое масло подаётся через трубу. Для нормальной работы пылеуловителя уровень масла должен поддерживаться на 25-50 мм ниже концов контактных трубок. Установка масляных пылеуловителей включает в себя масляные пылеуловители, отстойники масла, аккумулятор масла, короб для сбора грязного масла, ёмкость для чистого масла и насос. Объём масла для заполнения одного пылеуловителя составляет 2,65 м3 при диаметре 1600 мм. Расход масла допускается 25 г на 1000 м3 газа. В настоящее время наибольшее распространение получили циклонные сепараторы. С уменьшением диаметра циклона значительно увеличивается центробежная сила и скорость осаждения частиц. На остывание этого принципа созданы конструкции батарейных циклонов (мультициклоны). Мультициклоны состоят из параллельно включённых элементов малого диаметра (150-250 мм). Газ с примесями жидких и твёрдых частиц подаётся через входной патрубок в среднюю часть мультициклона, далее через вихревые устройства циклонов поступает в нижнюю часть мультициклона, где происходит оседание всех примесей. Освобождённый от частиц пыли и жидкости газ идёт по внутренним трубкам циклонов, попадает в верхнюю часть и через выходной патрубок направляется в газопроводы. Осевшая внизу на дне аппарата загрязнённая жидкость удаляется через дренажную трубку в перевозимую ёмкость. Сброс конденсата автоматизирован. В связи с невозможностью достичь высокой степени очистки газа в циклонных пылеуловителях появляется необходимость выполнять вторую ступень очистки, используют фильтр-сепаратор, установленный последовательно после циклонных пылеуловителей. Работа фильтра-сепаратора осуществляется следующим образом: газ после входного патрубка с помощью специального отбойного козырька направляется на вход фильтрующей секции, где происходит коагуляция жидкости и очистка от механических примесей. Через перфорированные отверстия в корпусе фильтрующих элементов газ поступает во вторую фильтрующую секцию - секцию сепарации. В секции сепарации происходит окончательная очистка газа от влаги, которая улавливается с помощью сетчатых пакетов. Через дренажные патрубки механические примеси удаляются в нижний дренажный сборник и далее в подземные ёмкости. Для работы в зимнее время фильтр-сепаратор обогревается электрообогревом его нижней части, конденсатосборником и контрольно-измерительной аппаратурой. При достижении перепада давлений на фильтре-сепаратора равное 0,04 МПа, фильтр-сепаратор необходимо отключить и заменить элементы на новые. Наличие влаги в газе вызывает коррозию оборудования, снижает пропускную способность газопровода. При взаимодействии с газом при определённых термодинамических условиях, образуются твёрдые кристаллические вещества - гидраты, которые нарушают нормальную работу газопровода. Метод борьбы с гидратами - осушка газа сепараторами различной конструкции с использованием твёрдых (адсорбция) и жидких (абсорбция) поглотителей. После очистки, содержание механических примесей в газе не должны превышать 5 мг/м3. Очищенный природный газ не имеет ни цвета, ни запаха, поэтому для обнаружения его утечек и определения наличия его в воздухе, газ предварительно одорируют, т.е. добавляют в него специальные вещества - одоранты, обладающие сильным специфическим запахом. Используют этилмеркаптан и тетрогидротиофен. Газ, поступающий к бытовым потребителям, должен быть обязательно одорирован. Норма одоризации составляет 16 г на 1000 нм3. [2]
1.4 Охлаждение газа на компрессорных станциях
В процессе компремирования газа, в частности повышается t (температура). Излишне высокая температура, с одной стороны может привести к разрушению изоляционного покрытия трубопровода, а с другой - к снижению подачи технологического газа и увеличению энергозатрат на его компремирование (из-за увеличения его объемного расхода). В северных районах, где газопроводы проходят в зоне вечномерзлых грунтах, газ охлаждают до отрицательных величин, с целью недопущения оттаивания грунтов, что может привести к смещению трубопровода и возникновению аварийных ситуаций. Охлаждение газа может осуществляться в холодильниках различных систем и конструкций: кожухотрубных (типа труба в трубе), воздушных компрессорных и абсорбирующих холодильных машинах, различного типа градильнях, воздушных холодильниках. Наибольшее распространение на КС схемы с использованием аппаратов воздушного охлаждения АВО. Температура газа после охлаждения в АВО не может быть ниже температуры наружного воздуха. Конструктивно аппараты охлаждения подразделены на вертикальные (АВВ), горизонтальные (АВГ), зигзагообразные, шатровые (АВШ) и кольцевые (АВК).принцип действия АВО состоит в том, что поток воздуха, нагнетаемый вентилятором, направляется на поверхность теплообмена (батарею труб) и охлаждает проходящий по трубам газ. На рамную конструкцию установлены охлаждающие секции. Холодный теплоноситель (наружный воздух) подается к охлаждающим секциям вентилятором, через диффузор. В зависимости от условий эксплуатации АВО выпускают нескольких типов: без жалюзи; Ж - с жалюзи; Н - с приводом для работы во взрывобезопасной среде; В - с приводом для работы во взрывоопасной среде; 1 - с тихоходным электродвигателем. Варианты исполнения привода дистанционного механизма поворота лопастей вентилятора: Р - ручной; П - пневматический; Э - электромеханический; У - с центральным ручным регулированием угла установки лопастей при остановленном вентиляторе. Поворотные лопасти позволяют регулировать расход воздуха для регулировки t газа при изменении t окружающего воздуха. АВО также могут быть поставлены с увлажнителем.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|