Термоэлектрические преобразователи
C евастопольский Национальный Университет ядерной энергии и промышленности
Контрольная работа по дисциплине Контроль и управление химико-технологическими процессами Тема: Физические основы измерительных преобразователей
Выполнил:Студент заочного отделения Факультета ЯХТ Д-34А Бурак А.В.
Севастополь 2006 План 1. Тепловые преобразователи 2. Основные виды тепловых преобразователей 2.1 Термоэлектрические преобразователи 2.2 Применение термоэлектрических преобразователей в термометрах 2.3 Терморезисторы Литература Тепловые преобразователи
Тепловыми называют преобразователь, принцип действия которого основан на тепловых процессах. Естественная входная величина его – температура. К таким преобразователям относятся термоэлектрические преобразователи и терморезисторы. Термоэлектрические преобразователи часто называют термопарами. ТЕРМОПАРА - термочувствительный элемент в устройствах для измерения температуры, системах управления и контроля. Состоит из двух последовательно соединенных (спаянных) между собой разнородных проводников или (реже) полупроводников. Если спаи находятся при разных температурах, то в цепи термопары возникает электродвижущая сила (термоэлектродвижущая сила), величина которой однозначно связана с разностью температур "горячего" и "холодного" контактов. ТЕРМОРЕЗИСТОР - проводник или полупроводник, сопротивление которого достаточно сильно зависит от температуры. Часто терморезистор называют просто термистором. Широкое применение получили полупроводниковые резисторы, электрическое сопротивление которых существенно убывает или возрастает с ростом температуры. Используются в измерителях мощности, устройствах для измерения и регулирования температуры и др.
Основные виды тепловых преобразователей Термоэлектрические преобразователи
Принцип действия термоэлектрических преобразователей или термопар основан на явлении термоэлектрического эффекта, которое заключается в том, что в цепи из двух различных проводников (или полупроводников), соединенных между собой концами при разности температур соединений возникает ЭДС, называемая термоэлектродвижущей силой (термо-ЭДС). Такая цепь называется термоэлектрическим преобразователем или термопарой. Проводники, составляющие термопару, называются термоэлектродами, а места их соединения спаями. Рабочий конец термопары, помещенный в измеряемую среду, называют горчим спаем, а свободный (нерабочий) – холодным. Один из термоэлектродов называется термоположительным, а второй – термоотрицательным. Термоположительным называют тот проводник, от которого термоток течет в холодном спае, а термоотрицательным – тот проводник, к которому течет термоток в том же холодном спае. При небольшом перепаде температур между спаями термо-ЭДС пропорциональна разности температур. Величина термо-ЭДС зависит только от природы проводников и от температуры спаев и не зависит от распределения температур между спаями. Явление термоэлектричества принадлежит к числу обратных явлений. Если через цепь, состоящую из двух различных проводников или полупроводников, пропустить электрический ток, то в одном спае выделяется тепло, а на другом поглощается. В разнородных проводниках количество свободных электронов на единицу объема различно. Обозначим , – плотность свободных электронов соответственно в проводниках и . Пусть > . При соединении проводников в спаях происходит диффузия электронов из термоэлектрода в термоэлектрод . В результате термоэлектрод заряжается положительно, а термоэлектрод – отрицательно.
В спаях возникает электрическое поле, т.е. ЭДС. Обозначим эти ЭДС: - в спае 1, - в спае 2. В замкнутой цепи из двух разнородных проводников образуется 2 ЭДС, направленные встречно. Результирующая ЭДС:
(1)
Диффузия электронов, а следовательно и возникающая ЭДС, в спае очень сильно зависит от температуры. Если спаи 1 и 2 находятся при одинаковой температуре, то результирующая ЭДС в цепи равна нулю:
Если спай 1 поместить в измеряемую среду, а спай 2 – в помещение, где температура t0 = const, то возникает результирующая ЭДС:
Если температуру в помещении поддерживать постоянной, то
(2)
В этом случае, измерив результирующую ЭДС () по выражению (2), можно определить и температуру в спае 1. Зависимость (2) определяется экспериментально. Определение зависимости ЭДС термопары () от температуры рабочего спая при заданном значении свободного спая и для выбранных материалов термоэлектродов и называется градурировкой термопары. Свободный спай термопары проходит через схему прибора. Измеряя ЭДС термопары (ЕТП) с помощью прибора и используя градуировочную таблицу, мы определяем температуру в рабочей точке 1.
Градуировочная таблица термопары платинородий-платина при температуре свободных концов 00С.
В соответствии с ГОСТ имеются термопары нескольких градуировок:
1.Платинородий – платиновые. Обозначение: гр.ПП-1 Пределы измерения температуры: -200 ÷ 13000С. Чувствительность: = 1,06 мВ/1000С.
Эти термопары самые точные, применяются в качестве образцовых, но они дорогие. 2.Хромель – алюмелевые. Обозначение: гр.ХА Пределы измерения температуры: -2000 ÷ 10000С. Чувствительность:
= 4,03 мВ/1000С.
3.Хромель – копелевые. Обозначение: гр.ХК Пределы измерения температуры: -2000 ÷ 6000С. Чувствительность:
= 8,3 мВ/1000С.
В особых случаях применяются нестандартные термопары, например, вольфраммолибденовые до t = 23000С. В указанных пределах изменения температур для вышеперечисленных термопар зависимость ЕТП = еt (t) – K линейна.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|