Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

К костям предплечья относятся локтевая и лучевая кости.




Содержание.

1. Строение живой клетки.Органеллы и включения…………………………2

2. Плечевая кость и кости предплечья……………………………………………….8

3. Мышцы гдудной и брюшной стенок……………………………………………….9

4. Задняя кишка(толстая кишка)………………………………………………………….12

5. Конечный мозг………………………………………………………………………………….15

6. Список литературы…………………………………………………………………………..

Кле́тка

Кле́тка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов, о которых нередко говорят как о неклеточных формах жизни), обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо состоят из множества клеток (многоклеточные животные, растения и грибы), либо являются одноклеточными организмами (многие простейшие и бактерии). Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии

Строение клеток

Все клеточные формы жизни на Земле можно разделить на два надцарства на основании строения составляющих их клеток:

прокариоты (доядерные) — более простые по строению и возникли в процессе эволюции раньше;

эукариоты (ядерные) — более сложные, возникли позже. Клетки, составляющие тело человека, являются эукариотическими.

Несмотря на многообразие форм, организация клеток всех живых организмов подчинена единым структурным принципам.

Содержимое клетки отделено от окружающей среды плазматической мембраной, или плазмалеммой. Внутри клетка заполнена цитоплазмой, в которой расположены различныеорганоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждый из органоидов клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Прокариотическая клетка

Прокариоты (от лат. pro — перед, до и греч. κάρῠον — ядро, орех) — организмы, не обладающие, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий). Единственная крупная кольцевая (у некоторых видов — линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли), и археи. Потомками прокариотических клеток являются органеллы эукариотических клеток — митохондрии и пластиды. Основное содержимое клетки, заполняющее весь её объём, — вязкая зернистая цитоплазма.

Эукариотическая клетка

Эукариоты (эвкариоты) (от греч. ευ — хорошо, полностью и κάρῠον — ядро, орех) — организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой. Генетический материал заключён в нескольких линейных двухцепочных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикреплённых изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов(эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты — митохондрии, а у водорослей и растений — также и пластиды.

Клеточная теория

Клеточная теория строения организмов была сформирована в 1839 году немецкими зоологами Т. Шванном и М. Шлейденом и включала в себя три положения. В 1858 году Рудольф Вирхов дополнил её ещё одним положением, однако в его идеях присутствовал ряд ошибок: так, он предполагал, что клетки слабо связаны друг с другом и существуют каждая «сама по себе». Лишь позднее удалось доказать целостность клеточной системы.

В 1878 году русским учёным И. Д. Чистяковым открыт митоз в растительных клетках; в 1878 году В. Флемминг и П. И. Перемежко обнаруживают митоз у животных. В 1882 году В. Флемминг наблюдает мейоз у животных клеток, а в 1888 году Э. Страсбургер — у растительных.

Клеточная теория является одной из основополагающих идей современной биологии, она стала неопровержимым доказательством единства всего живого и фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Основные положения клеточной теории не потеряли своей актуальности, однако со времени её создания были дополнены, и теперь она содержит такие утверждения:

Клетка — элементарная единица строения, функционирования, размножения и развития всех живых организмов, вне клетки нет жизни.

Клетка — целостная система, содержащая большое количество связанных друг с другом элементов — органелл.

Клетки различных организмов похожи (гомологичны) по строению и основным свойствам и имеют общее происхождение.

Увеличение количества клеток происходит путем их деления, после репликации их ДНК: клетка — от клетки.

Многоклеточный организм — это новая система, сложный ансамбль из большого количества клеток, объединенных и интегрированных в системы тканей и органов, связанных между собой с помощью химических факторов: гуморальных и нервных.

Клетки многоклеточных организмов тотипотентны — любая клетка многоклеточного организма обладает одинаковым полным фондом генетического материала этого организма, всеми возможными потенциями для проявления этого материала, — но отличаются по уровню экспрессии (работы) отдельных генов, что приводит к их морфологическому и функциональному разнообразию — дифференцировке[1].

Цитопла́зма

Цитопла́зма (от греч. κύτος «клетка» и πλάσμα здесь «содержимое») — внутренняя среда живой или умершей клетки, кроме ядра и вакуоли, ограниченная плазматической мембраной. Включает гиалоплазму — основное прозрачное вещество цитоплазмы, находящиеся в ней обязательные клеточные компоненты — органеллы, а также различные непостоянные структуры — включения. Иногда под цитоплазмой понимают только гиалоплазму.

Термин «цитоплазма» ввёл Эдуард Страсбургер в 1882 году[2].

В состав цитоплазмы входят органические и неорганические вещества многих видов. Основное вещество цитоплазмы — вода. Многие вещества (например, минеральные соли, глюкоза, аминокислоты) образуют истинный раствор, некоторые другие (например, белки) — коллоидный. В ней протекают почти все процессы клеточного метаболизма. Среди прочего, в цитоплазме есть нерастворимые отходы обменных процессов и запасные питательные вещества.

Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды[1]. Это движение называется циклозом.

Цитоплазма способна к росту и воспроизведению и при частичном удалении может восстановиться. Однако она нормально функционирует только в присутствии ядра. Без него долго существовать цитоплазма обычно не может[1], как и ядро без цитоплазмы.

Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор клетки.

Схема строения типичной клетки животного. Отмеченные органоиды (органеллы):

1) Ядрышко

2) Ядро

3) Рибосома

4) Везикула

5) Шероховатая эндоплазматическая сеть

6) Аппарат Гольджи

7) Клеточная стенка

8) Гладкая эндоплазматическая сеть

9) Митохондрия

10) Вакуоль

11) Цитоплазма

12) Лизосома

13) Центросома

 

Кле́точная мембра́на

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты илиорганеллы, в которых поддерживаются определённые условия среды.

Функции

барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров,электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.

транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускаетгидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.

механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Гиалоплазма

Цитозоль (англ. cytosol) или внутриклеточная жидкость, матрикс цитоплазмы, гиалоплазма — жидкость, находящаяся внутри клеток. У эукариот матрикс цитоплазмы отделен клеточными мембранами от содержимого органоидов, например, матриксамитохондрий. Содержимое клетки за исключением плазматической мембраны и ядра называют цитоплазмой.

У прокариот большинство реакций метаболизма протекают в цитозоле, и лишь малое количество — в периплазматическом пространстве. У эукариот часть метаболических путей протекают в цитозоле, а часть — внутри органоидов.

Цитозоль представляет собой смесь веществ, растворенных в воде. Концентрации ионов натрия и калия в цитозоле отличаются от таковых во внеклеточном пространстве, эти различия в концентрациях ионов играют важную роль в осморегуляции и передаче сигнала.

Органоиды

Органоиды (от орган и др.-греч. εἶδος — вид), или органеллы — в цитологии: постоянные специализированные структуры в клетках живых организмов. Каждый органоид осуществляет определённые функции, жизненно необходимые для клетки. Термин «Органоиды» объясняется сопоставлением этих компонентов клетки с органами многоклеточного организма. Органоиды противопоставляют временным включениям клетки, которые появляются и исчезают в процессе обмена веществ.

Иногда органоидами считают только постоянные структуры клетки, расположенные в её цитоплазме. Часто ядро и внутриядерные структуры (например, ядрышко) не называют органоидами. Клеточную мембрану, реснички и жгутики тоже обычно не причисляют к органоидам.

Рецепторы и прочие мелкие, молекулярного уровня, структуры, органоидами не называют. Граница между молекулами и органоидами не очень четкая. Так, рибосомы, которые обычно однозначно относят к органоидам, можно считать и сложным молекулярным комплексом. Все чаще к органоидам причисляют и другие подобные комплексы сравнимых размеров и уровня сложности — протеасомы, сплайсосомы и др. В то же время сравнимые по размерам элементы цитоскелета (микротрубочки, толстые филаменты поперечнополосатых мышц и т. п.) обычно к органоидам не относят. Степень постоянства клеточной структуры — тоже ненадёжный критерий её отнесения к органоидам. Так, веретено деления, которое хотя и не постоянно, но закономерно присутствует во всех эукариотических клетках, обычно к органоидам не относят, а везикулы, которые постоянно появляются и исчезают в процессе обмена веществ — относят. Во многом набор органоидов, перечисляемый в учебных руководствах, определяется традицией.

 

Включения цитоплазмы

Включения цитоплазмы — это необязательные компоненты клетки, появляющиеся и исчезающие в зависимости от интенсивности и характера обмена веществ в клетке и от условий существования организма. Включения имеют вид зерен, глыбок, капель, вакуолей, гранул различной величины и формы. Их химическая природа очень разнообразна. В зависимости от функционального назначения включения объединяют в группы:

трофические;

секреты;

инкреты;

пигменты;

экскреты и др.

специальные включения (гемоглобин)

Среди трофических включений (запасных питательных веществ) важную роль играют жиры и углеводы. Белки как трофические включения используются лишь в редких случаях (в яйцеклетках в виде желточных зерен).

Пигментные включения придают клеткам и тканям определенную окраску.

Секреты и инкреты накапливаются в железистых клетках, так как являются специфическими продуктами их функциональной активности.

Экскреты - конечные продукты жизнедеятельности клетки, подлежащие удалению из нее.

Плечевая кость

Плечевая кость (humerus) имеет тело (центральную часть) и два конца. Верхний конец переходит в головку (capet humeri), по краю которой проходит анатомическая шейка (collum anatomikum). За анатомической шейкой расположены большой (tuberculum majus) и малый бугорки (tuberculum minus), от которых отходят одноименные гребни (cristae tuberculi majoris et minoris). Между бугорками идет межбугорковая борозда (sulcus intertubercularis).

Между головкой и телом плечевой кости находится самое тонкое место кости – хирургическая шейка (collum chirurgicum).

В нижней половине плечевой кости, имеющей трехгранную форму, различают три поверхности: медиальную, латеральную и заднюю. На латеральной поверхности расположена дельтовидная бугристость (tuberositas deltoidea), ниже которой проходит борозда лучевого нерва (sulkus nervi radialis). Дистальный конец плечевой кости заканчивается мыщелком (condilus humeri), медиальная часть которого представлена блоком плечевой кости (trochlea humeri), а латеральная – головкой мыщелка плечевой кости (capitulum humeri). Над блоком спереди имеется венечная ямка (fossa coronaidea), а сзади – ямка локтевого отростка (fossa olekrani). Над головкой мыщелка расположена лучевая ямка (fossa radialis). Над мыщелками расположены возвышения – надмыщелки: медиальный и латеральный. Медиальный надмыщелок (epicondylus medialis) переходит в медиальный гребень, образующий медиальный край плечевой кости. На его задней поверхности проходит борозда локтевого нерва (sulcus nervi ulnaris). Латеральный надмыщелок (epicondylus lateralis) переходит в латеральный гребень, образующий латеральный край.

К костям предплечья относятся локтевая и лучевая кости.

Лучевая кость (radius) имеет тело и два конца. Проксимальный конец переходит в головку лучевой кости (caput radii), на которой имеется суставная ямка (fovea artikularis). Под головкой расположена шейка лучевой кости (collum radii), за которой расположена бугристость (tuberositas radii). Дистальный конец имеет с медиальной стороны локтевую вырезку (incisura ulnaris), а с латеральной – шиловидный отросток (processus styloideus). Нижняя поверхность дистального конца представлена вогнутой запястной суставной поверхностью.

 

Локтевая кость (ulna). На ее проксимальном конце расположена блоковидная вырезка (incisura trochlearis), заканчивающаяся двумя отростками: локтевым (olecranon) и венечным (processus coronoideus). На венечном отростке расположена лучевая вырезка (incisura radialis), а чуть ниже этого отростка расположена бугристость локтевой кости (tuberositas ulnae). Дистальный конец заканчивается головкой (caput ulnae), с медиальной стороны которой отходит шиловидный отросток (processus styloideus). Головка имеет суставную окружность (circumferencia articularis).

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...