Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Протолитическая теория кислот и оснований




 

Протолиз – процесс передачи протона.

Протолиты – кислоты и основания, отдающие и принимающие протоны.

Кислота – молекула или ион, способные отдавать протон. Каждой кислоте соответствует сопряженное с нею основание. Сила кислот характеризуется константой кислоты Кк.

Н2CO3 + Н2O ↔ Н3O+ + HCO3¯

Кк = 4 × 10-7

[Al(Н2O)6]3+ + Н2O ↔ [Al(Н2O)5OH]2+ + Н3O+

Кк = 9 × 10-6

Основание – молекула или ион, способные принимать протон. Каждому основанию соответствует сопряженная с ним кислота. Сила оснований характеризуется константой основания К0.

NH3 × Н2O (Н2O) ↔ NH4+ + OH¯

К0= 1,8 ×10-5

Амфолиты – протолиты, способные к отдаче и к присоединению протона.

HCO3¯ + H2O ↔ Н3O+ + CO32-

HCO3¯ – кислота.

HCO3¯ + H2O ↔ Н2CO3 + OH¯

HCO3¯ – основание.

Для воды: Н2O+ Н2O ↔ Н3O+ + OH¯

K(H2O) = [Н3O+][OH¯] = 10-14 и рН = – lg[H3O+].

Константы Кк и К0 для сопряженных кислот и оснований связаны между собой.

НА + Н2O ↔ Н3O+ + А¯,

 

А¯ + Н2O ↔ НА + OH¯,

 

Отсюда

 

Константа растворимости. Растворимость

 

В системе, состоящей из раствора и осадка, идут два процесса – растворение осадка и осаждение. Равенство скоростей этих двух процессов является условием равновесия.

Насыщенный раствор – раствор, который находится в равновесии с осадком.

Закон действия масс в применении к равновесию между осадком и раствором дает:

 

Поскольку [AgClтв] = const,

К • [AgClтв] = Ks(AgCl) = [Ag+] • [Cl¯].

В общем виде имеем:

А m B n (тв.) ↔ m A +n + n B -m

Ks( A m B n) = [А +n ] m • [В -m ] n .

Константа растворимости Ks (или произведение растворимости ПР) – произведение концентраций ионов в насыщенном растворе малорастворимого электролита – есть величина постоянная и зависит лишь от температуры.

Растворимость малорастворимого вещества s может быть выражена в молях на литр. В зависимости от величины s вещества могут быть разделены на малорастворимые – s < 10-4 моль/л, среднерастворимые – 10-4 моль/л &#8804; s &#8804; 10-2 моль/л и хорошо растворимые s >10-2 моль/л.

Растворимость соединений связана с их произведением растворимости.

 

 

Условие осаждения и растворения осадка

 

В случае AgCl: AgCl &#8596; Ag+ + Cl&#175;

Ks = [Ag+] • [CI&#175;]:

а) условие равновесия между осадком и раствором: [Ag+] • [Cl&#175;] = Ks.

б) условие осаждения: [Ag+] • [Cl&#175;] > Ks; в ходе осаждения концентрации ионов уменьшаются до установления равновесия;

в) условие растворения осадка или существования насыщенного раствора: [Ag+] • [Cl&#175;] < Ks; в ходе растворения осадка концентрация ионов увеличивается до установления равновесия.

 

Координационные соединения

 

Координационные (комплексные) соединения – соединения с донорно-акцеп-торной связью.

Для K3[Fe(CN)6]:

ионы внешней сферы – 3К+,

ион внутренней сферы – [Fe(CN)6]3-,

комплексообразователь – Fe3+,

лиганды – 6CN&#175;, их дентатность – 1,

координационное число – 6.

Примеры комплексообразователей: Ag+, Cu2+, Hg2+, Zn2+, Ni2+, Fe3+, Pt4+ и др.

Примеры лигандов: полярные молекулы Н2O, NH3, CO и анионы CN&#175;, Cl&#175;, OH&#175; и др.

Координационные числа: обычно 4 или 6, реже 2, 3 и др.

Номенклатура. Называют сначала анион (в именительном падеже), затем катион (в родительном падеже). Названия некоторых лигандов: NH3 – аммин, Н2O – акво, CN&#175; – циано, Cl&#175; – хлоро, OH&#175; – гидроксо. Названия координационных чисел: 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса. Указывают степень окисления комплек-сообразователя:

[Ag(NH3)2]Cl – хлорид диамминсеребра(I);

[Cu(NH3)4]SO4 – сульфат тетрамминмеди(II);

K3[Fe(CN)6] – гексацианоферрат(III) калия.

 

Химическая связь.

 

Теория валентных связей предполагает гибридизацию орбиталей центрального атома. Расположение образующихся при этом гибридных орбиталей определяет геометрию комплексов.

Диамагнитный комплексный ион Fe(CN)64-.

Цианид-ион – донор

 

Ион железа Fe2+ – акцептор – имеет формулу 3d64s04p0. С учетом диамагнитности комплекса (все электроны спарены) и координационного числа (нужны 6 свободных орбиталей) имеем d2sp3 -гибридизацию:

 

Комплекс диамагнитный, низкоспиновый, внутриорбитальный, стабильный (не используются внешние электроны), октаэд-рический (d2sp3 -гибридизация).

Парамагнитный комплексный ион FeF63-.

Фторид-ион – донор.

Ион железа Fe3+ – акцептор – имеет формулу 3d54s04p0. С учетом парамагнитности комплекса (электроны распарены) и координационного числа (нужны 6 свободных орбиталей) имеем sp3d2 -гибридизацию:

 

Комплекс парамагнитный, высокоспиновый, внешнеорбитальный, нестабильный (использованы внешние 4d-орбитали), октаэдрический (sp3d2 -гибридизация).

 

Диссоциация координационных соединений.

 

Координационные соединения в растворе полностью диссоциируют на ионы внутренней и внешней сфер.

[Ag(NH3)2]NO3 &#8594; Ag(NH3)2+ + NO3&#175;, &#945; = 1.

Ионы внутренней сферы, т. е. комплексные ионы, диссоциируют на ионы металла и лиганды, как слабые электролиты, по ступеням.

 

где K 1, К 2, К 1_2 называются константами нестойкости и характеризуют диссоциацию комплексов: чем меньше константа нестойкости, тем меньше диссоциирует комплекс, тем он устойчивее.

 

 

II. НЕОРГАНИЧЕСКАЯ ХИМИЯ

 

Основные классы неорганических соединений

 

 

Оксиды

 

Оксиды – сложные вещества, состоящие из атомов кислорода в степени окисления -2 и атомов другого элемента.

 

Номенклатура: Fe2O3 – оксид железа(III), Cl2O – оксид хлора(I).

 

Классификация оксидов

 

Несолеобразующие (безразличные) оксиды: CO, SiO, NO, N2O.

Солеобразующие оксиды:

основные – оксиды металлов в степени окисления +1, +2,

амфотерные – оксиды металлов в степени окисления +2, +3, +4,

кислотные – оксиды металлов в степени окисления +5, +6, +7 и

оксиды неметаллов в степени окисления +1 – +7.

 

Получение оксидов

 

Горение простых веществ:

С + O2 = CO2

2Са + O2 = 2СаО

Горение (обжиг) сложных веществ:

CH4 + 2O2 = CO2 + 2Н2O

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

Разложение сложных веществ:

CaCO3 &#8594; t &#8594; СаО + CO2

2Fe(OH)3 &#8594; t &#8594; Fe2O3 + ЗН2O

 

Химические свойства оксидов

 

Основным оксидам (Na2O, CaO, CuO, FeO) соответствуют основания.

СаО + Н2O = Са(OH)2 (растворимы оксиды металлов IA– и IIА-групп, кроме Be, Mg)

CuO + Н2O &#8800; (оксиды остальных металлов нерастворимы)

СаО + CO2 = CaCO3

СаО + 2HCl = CaCl2 + Н2O

Кислотным оксидам (CO2, Р2O5, СrO3, Mn2O7) соответствуют кислоты.

SO2 + Н2O = H2SO3 (кислотные оксиды, кроме SiO2, растворимы в воде)

SO2 + СаО = CaSO3

SO2 + 2NaOH = Na2SO3 + Н2O

Амфотерным оксидам (ZnO, Al2O3, Cr2O3, ВеО, РЬО) соответствуют амфотерные гидроксиды.

ZnO + H2O &#8800; (амфотерные оксиды нерастворимы в воде)

ZnO + 2HCl = ZnCl2 + Н2O

ZnO + 2NaOH &#8594; t &#8594; Na2ZnO2 + Н2O (при нагревании или сплавлении)

ZnO + 2NaOH + H2O = Na2[Zn(OH)4] (в разбавленном растворе)

 

Основания

 

Основания – сложные вещества, состоящие из атомов металла и гидроксиль-ных групп; основания – электролиты, образующие при диссоциации в качестве анионов только анионы гидроксила.

Номенклатура: Fe(OH)3 – гидроксид железа(III).

 

Классификация оснований:

 

– растворимые (щелочи) NaOH, KOH;

– нерастворимые Fe(OH)2, Mg(OH)2;

– амфотерные Zn(OH)2, Al(OH)3, Ве(OH)2, Сr(OH)3;

– однокислотные NaOH, KOH;

– двухкислотные Ва(OH)2, Zn(OH)2;

– трехкислотные Al(OH)3, Сr(OH)3.

 

Получение оснований

 

Получение щелочей:

2Na + 2Н2O = 2NaOH + Н2

Na2O + Н2O = 2NaOH

Получение нерастворимых и амфотер-ных оснований:

FeSO4 + 2NaOH = Fe(OH)2&#8595; + Na2SO4

AlCl3 + 3NaOH = Al(OH)3&#8595; + 3NaCl

 

Свойства щелочей:

 

NaOH &#8594; Na+ + OH&#175; (&#945; = 1, фенолфталеин – красный)

NaOH + HCl = NaCl + H2O (реакция нейтрализации)

2NaOH + CO2 = Na2CO3 + H2O

2NaOH + Zn(OH)2 = Na2[Zn(OH)4]

2NaOH + Al2O3 &#8594; t &#8594; 2NaAlO2 + H2O

2NaOH + CuSO4 = Cu(OH)2&#8595; + Na2SO4

2NaOH + Zn + 2H2O = Na2[Zn(OH)4] + H2

2NaOH + 2Al + 6H2O = 2Na[Al(OH)4] + 3H2

2NaOH + Si + H2O = Na2SiO3 + 2H2

 

Свойства нерастворимых оснований:

 

Fe(OH)2 &#8596; FeOH+ + OH&#175; (&#945; << 1);

FeOH+ &#8596; Fe2+ + OH&#8254; (&#945; << 1)

Fe(OH)2 + H2SO4 = FeSO4 + 2H2O

Fe(OH)2 &#8594; t &#8594; FeO + H2O

 

Свойства амфотерных оснований:

 

Al3++ ЗOH&#175; + Н2O &#8596; Al(OH)3&#8595; + Н2O &#8596; [Al(OH)4]&#175; + Н+

Al(OH)3 + ЗHCl = AlCl3 + ЗН2O

Al(OH)3 + NaOH = Na[Al(OH)4]

2Al(OH)3 &#8594; t &#8594; Al2O3 + ЗН2O

 

Кислоты

 

Кислоты – сложные вещества, состоящие из атомов водорода и кислотного остатка; кислоты – электролиты, образующие при диссоциации в качестве катионов только катионы водорода.

Номенклатура кислот и кислотных остатков:

 

Классификация кислот:

 

– одноосновные HCl

– двухосновные H2S

– трехосновные Н3PO4

– кислородсодержащие HNO3

– бескислородные HCl

 

Получение кислот

 

CO2 + Н2O = Н2CO3 (кроме SiO2)

Na2SiO3 + H2SO4 = Na2SO4 + H2SiO3&#8595;

H2 + Cl2 = 2HCl

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...