Мониторинг вентиляционных параметров
Вентиляционные параметры (МОД, дыхательный объем, частота вентиляции и т.д.) чаще всего представлены на цифровых индикаторах и дисплеях современных многофункциональных респираторов. При оценке таких параметров, как МОД и дыхательный объем, следует прежде всего обращать внимание, насколько они отличаются от заданных величин, установленных управляющими ручками или сенсорами. Разница более 10 % свидетельствует либо о негерметичности дыхательного контура, либо о дополнительной работе, выполняемой больным. Во время проведения ИВЛ мы рекомендуем в первую очередь контролировать именно МОД, а не дыхательный объем, который более лабилен. При всех режимах ВВЛ главным мони-торируемым параметром является суммарная частота вентиляции, что неоднократно отмечалось выше. Важный параметр — отношение времени вдох: выдох. На респираторах с устанавливаемым потоком он может произвольно меняться в зависимости от состояния механических свойств легких и в определенных условиях даже становиться инверсированным. Очень важную информацию дают кривые давления и потока в дыхательных путях [Rasanen J., 1994]. При ИВЛ они должны быть совершенно одинаковыми во всех дыхательных циклах. Изменение формы кривых свидетельствует о появле- Рис. 25.1. Петля «объем—давление» при ИВЛ без ПДКВ (а) и ИВЛ с ПДКВ (б). Запись на мониторе респиратора «Puritan-Bennett 7200». '•' нии у больного самостоятельного дыхания (окончание действия миорелаксантов, нарушение адаптации к респиратору). При ВВЛ кривая давления во время инспираторной попытки не должна спускаться ниже нулевой линии. По кривой потока можно распознать негерметичность дыхательного контура (см. главу 21), наличие «внутреннего» ПДКВ (см. главу 2). Существенную информацию можно получить по петлям «объем—давление» и «поток—объем» (рис. 25.1). Незамкнутость петли «объем—давление» свидетельствует об утечке воздуха, ее смещение вправо от средней линии — о наличии ПДКВ, смещение части петли влево — об увеличенной работе дыхания, выполняемой больным, отклонение к горизонтальной линии — об увеличении бронхиального сопротивления. Вызывать эти петли на экран монитора время от времени необходимо, но мы рекомендуем постоянно иметь перед глазами на экране кривые давления и потока.
Кроме кривой, величины давления в дыхательных путях отражаются на цифровых индикаторах. Обычно визуализируются четыре величины: РПик> давление в конце плато (РПлат)> давление в конце выдоха и среднее давление дыхательного цикла. Все они имеют большое значение, но если стабильность' работы респиратора не внушает сомнения, давление в конце выдоха можно проверять эпизодически, тем более что оно хорошо видно на стрелочном манометре, обычно имеющемся на панели респиратора. Рплат важно для выбора параметров при переходе от традиционной ИВЛ к ИВЛ с управляемым давлением или методам ВВЛ с поддержкой дыхания давлением, вентиляции с двумя фазами положительного давления в дыхательных путях (см. главы 5, 6 и 10). Среднее давление дыхательного цикла имеет особое значение при проведении ВЧ ИВЛ или ВЧ ВВЛ, так как отражает наличие и, в определенной степени, величину «внутреннего» ПДКВ. Пожалуй, наибольшее значение имеет величина РПик- Она свидетельствует о «жесткости» легких и сопротивлении дыха- тельных путей, безопасности выбранного режима ИВЛ и ВВЛ в отношении баротравмы легких, сигнализирует о случайной разгерметизации дыхательного контура. Внезапное повышение рпик может свидетельствовать об окклюзии дыхательных путей, перегибе эндотрахеальной трубки или образовании «грыжи» раздувной манжетки, остром бронхоспазме, пневмотораксе. Кратковременное повышение Рпик вызывают кашле-вые и рвотные движения.
Современные мониторы, как встроенные в респиратор, так и являющиеся отдельным прибором, автоматически вычисляют и показывают графически или цифрами во время ИВЛ (но не при всех режимах ВВЛ!) такие важные показатели, как растяжимость системы легкие—грудная клетка и сопротивление дыхательных путей. На значении этих показателей мы неоднократно останавливались выше. Здесь отметим, что весьма важную информацию дает величина отношения между статической растяжимостью системы легкие—грудная клетка и дыхательным объемом (C/Vx), которое прямо коррелирует с объемом внутриле-гочного шунта [Затевахина М.В., Цимбалов С.Г., 1996]. Мониторинг газообмена Современные стандарты мониторинга безопасности обязательно включают в себя контроль за состоянием газов во вдыхаемом и выдыхаемом воздухе, а также за насыщением крови кислородом. FiC-2, задаваемое респиратору врачом, контролируется специальным датчиком оксиметра, включенным в канал вдоха. Особое значение приобретает контроль FjO2 в процессе анестезии с использованием закиси азота (см. главу 15). Кроме того, независимо от канала вдоха в канале выдоха имеется свой оксиметрический датчик. Информативным показателем является разница между FjC^ и F^C^» которая отражает потребление организмом кислорода. Эффективность оксигенации определяется величиной SaO2, которая зависит как от вентиляции легких, так и от состояния гемодинамики. Этот важный параметр необходимо монитори-ровать постоянно с помощью пульсоксиметрического датчика. Существуют два вида датчиков — для установки на палец и на мочку уха. Последний может быть также установлен на кончик языка или носа (например, у ожоговых больных или при недостаточном периферическом кровотоке). Существенное значение в оценке динамики SaC-2 имеет также форма пульсо-ксиметрической кривой. Снижение сатурации может быть не только следствием нарушений газообмена в легких, но и результатом периферического сосудистого спазма различной этиологии. Такая ситуация отразится в виде снижения ампли-
туды кривой и исчезновении на ней дикротической волны. Кстати, укажем, что первым действием врача при снижении «SaO2 должно быть перемещение датчика пульсоксиметра на другой палец или мочку уха, чтобы избежать неправильной оценки состояния больного. Исключительно большое значение в оценке газообмена и го-меостаза в целом принадлежит капнометрии, мониторируемой в режиме on line. При ИВЛ в процессе анестезии содержание ССО2 в конце выдоха является, пожалуй, если не единственным, то главным показателем адекватности вентиляции метаболическим потребностям организма. FetCO2 (или Pet,CO2) является высокочувствительным параметром, реагирующим на операционный пневмоторакс, сдавление или выключение из вентиляции легкого (повышается), нарушения гемодинамики (снижается). FetCO2 также очень быстро и резко снижается даже при частичной разгерметизации дыхательного контура. Установлена высокая прямая корреляция между FetCO2 и сердечным выбросом [Флеров Е.В. и др., 1995]. Сегодняшний уровень развития газового мониторинга открывает путь для рутинного определения параметров механики дыхания во время анестезии [Merilajnen P.T., 1996]. Меньшее значение имеет величина FetCC>2 при проведении ИВЛ в интенсивной терапии, поскольку респираторную поддержку при ней осуществляют, особенно в остром периоде, в режиме гипервентиляции и об адекватности -вентиляционных параметров судят не по одному показателю, а по степени адаптации больного к респиратору. Однако важную информацию дает сопоставление PetCO2 и РаСОз- В норме разница между ними составляет' 5 мм рт.ст.; повышение этой разницы говорит о возросшем отношении vd/vt- Весьма информативна форма кривой капнограммы (рис. 25.2). Наличие на ней четко выраженного плато свидетельствует об удовлетворительном распределении воздуха в легких. Чем хуже выражено плато, тем в большей степени нарушены вентиляционно-перфузионные отношения в легких. Мониторинг газообмена проводят также по газам крови с использованием проточных (фиброоптическая оксиметрия) и транскутанных датчиков. Последний способ в настоящее время несколько утратил свое значение в связи с внедрением методов пульсоксиметрии и капнометрии выдыхаемого газа. Ограниченное применение транскутанной газометрии связано с ее зависимостью от состояния периферического кожного кровотока. Однако этот метод по-прежнему используют для оценки эффективности газообмена при ВЧ ИВЛ, при которой определение FetCO2 невозможно из-за большой частоты вентиляции.
Исследование газов крови микрометодом Аструпа также имеет большое значение, особенно в интенсивной терапии. Мо- Рис. 25.2. Кривые давления (Paw) и потока (Flow) в дыхательных путях, капнограмма (FCO2) при ИВЛ (а) и поддержке дыхания давлением (6). Видно существенное улучшение формы кривой капнограммы и повышение (нормализация) FetCO2 при переходе от ИВЛ к ВВЛ. Запись на мониторе «AS-3» фирмы «Datex». f! к| *?»Т'<*)."S***1"' •: ' -. к"'•;•'• ниторинг дыхательных газов не заменяет определения газового состава артериальной и венозной крови, а дополняет его и дает возможность непрерывного оперативного контроля. Следует иметь в виду, что ЗаОз, измеренное с помощью пульсоксиметра, а особенно с использованием транскутанного датчика, как правило, ниже, чем в артериальной крови, а РаСОз выше, чем PetCOg. Оценка параметров газов крови приведена в главе 1. 25.3. Мониторинг гемодинамики. *н Наибольшую информацию о состоянии кровообращения как в малом, так и в большом круге можно получить с помощью ин-вазивных методов. Обычно используют введение катетера Swan-Ganz в легочную артерию, что позволяет определить сердечный выброс методом термодилюции, а также канюлируют лучевую артерию. Прямое измерение давления в камерах сердца, легочной артерии и давления заклинивания, которое приравнивается к давлению в левом предсердии, позволяет получить многостороннее представление о центральной и легочной гемодинамике. Комплексный мониторинг также дает возможность контролировать метаболические функции легких путем «исследования крови, притекающей к легким (Swan-Ganz) и оттекающей от них (лучевая артерия). Многофакторный мониторинг позволяет также оценить состояние микроциркулятор-ного русла легких, рассчитать капиллярное давление и сопротивление пре- и постальвеолярных сосудов. Большое значение имеет систематическое определение объема внесосудистой жидкости легких (в том числе ее интерсти-циальной и внутриклеточной фракций) с использованием метода электроимпедансных индикаторов. Метод позволяет также определять сердечный выброс без катетеризации легочной артерии и в какой-то степени больше соответствует требованиям интенсивной терапии, хотя его с успехом применяют и в интраоперационном периоде.
Волюметрический мониторинг правого желудочка в реальном времени позволяет контролировать систолическую и диасистоли-ческую функции правого желудочка [Флеров Е.В., 1996]. Примеры выбора и оценки различных режимов респираторной поддержки с помощью комплексного мониторинга приведены в главе 16. Например, артериальная гипероксия при высоком РтОз, если к ней нет специальных показаний, на первый взгляд должна улучшать состояние больного (высокое РаО2 всегда расценивается, как благо), но на самом деле вызывает ряд тяжелых нарушений микроциркуляции и гидродинамики в легких. Трудно переоценить значение всех этих данных при выборе рациональных методов и режимов респираторной поддержки как в анестезиологии, так и особенно в интенсивной терапии1. Г л а в а 26 •
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|