Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Коэффициент полезного действия

Простые механизмы

С древних времен для облегчения своего труда человек использует различные механизмы (греч. "механэ" - машина, орудие).

Клин, вбиваемый в полено, действует на него сверху вниз. При этом он раздвигает образующиеся половинки влево и вправо. То есть клин изменяет направление действия силы. Кроме того, сила, с которой он раздвигает половинки бревна, гораздо больше силы, с которой молот воздействует на клин. Следовательно, клин изменяет и числовое значение приложенной силы.

Клин - одна из разновидностей простого механизма под названием "наклонная плоскость". Ее применяют, чтобы получить выигрыш в силе, то есть при помощи меньшей силы противодействовать большей силе. Взгляните на рисунок. Вкатывая бочки по наклонной плоскости, пираты прикладывают меньшую силу, нежели если бы они поднимали бочки на веревках. Другими словами, силы, прикладываемые пиратами, меньше веса бочек.

Второй разновидностью наклонной плоскости является винт. Взгляните на рисунок. Вы видите картонный треугольник, расположенный рядом с цилиндром (рис. "б"). Наклонной плоскостью служит ребро картона. Обернув треугольник вокруг цилиндра, мы получим винтовую наклонную плоскость (рис. "в"). Подобно клину, винт может изменять направление и/или числовое значение приложенной силы.

Поворачивая рукоятку штопора по часовой стрелке, мы вызываем продвижение винта штопора вниз. Другими словами, происходит преобразование движения: вращательное движение штопора приводит к его поступательному движению.

В физике приспособления для преобразования движения и силы называют механизмами. Большинство из них были изобретены еще до Нашей эры. Например, блоки, вороты, кабестаны, полиспасты издревле применялись при кораблестроении и мореплавании.

Используемые человеком механизмы могут быть устроены очень сложно, однако для понимания их работы достаточно изучить так называемые простые механизмы - рычаг и наклонную плоскость.

Коэффициент полезного действия

Коэффициент полезного действия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно h = Wпол/Wcyм.

В электрических двигателях КПД — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника.

В тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты.

В электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой.

Для вычисления КПД разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и других аналогичных соотношений. В силу своей общности понятие КПД позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. КПД всегда меньше единицы. Соответственно этому КПД выражается в долях затрачиваемой энергии, то есть в виде правильной дроби или в процентах, и является безразмерной величиной. КПД тепловых электростанций достигает 35-40%, двигателей внутреннего сгорания с наддувом и предварительным охлаждением — 40-50%, динамомашин и генераторов большой мощности — 95%, трансформаторов — 98%. КПД процесса фотосинтеза составляет обычно 6-8%, у хлореллы он достигает 20-25%. У тепловых двигателей в силу второго начала термодинамики КПД имеется верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим КПД обладает цикл Карно.

Различают КПД отдельного элемента (ступени) машины или устройства и КПД, характеризующий всю цепь преобразований энергии в системе. КПД первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и другие виды КПД. Общий КПД системы равен произведению частных КПД, или КПД ступеней.

В технической литературе КПД иногда определяют таким образом, что он может оказаться больше единицы. Подобная ситуация возникает, если определять КПД отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный КПД установки меньше единицы, рассмотренный КПД h=Wпол/Wзатр может оказаться больше единицы. Например, тепловой КПД кондиционеров в среднем равен 300-400%.

Коэффициент полезного действия (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно  = Wпол/Wcyм.

В электрических двигателях кпд — отношение совершаемой (полезной) механической работы к электрической энергии, получаемой от источника; в тепловых двигателях — отношение полезной механической работы к затрачиваемому количеству теплоты; в электрических трансформаторах — отношение электромагнитной энергии, получаемой во вторичной обмотке, к энергии, потребляемой первичной обмоткой. Для вычисления кпд разные виды энергии и механическая работа выражаются в одинаковых единицах на основе механического эквивалента теплоты, и др. аналогичных соотношений. В силу своей общности понятие кпд позволяет сравнивать и оценивать с единой точки зрения такие различные системы, как атомные реакторы, электрические генераторы и двигатели, теплоэнергетические установки, полупроводниковые приборы, биологические объекты и т. д.

Из-за неизбежных потерь энергии на трение, на нагревание окружающих тел и т. п. кпд всегда меньше единицы. Соответственно этому кпд выражается в долях затрачиваемой энергии, т. е. в виде правильной дроби или в процентах, и является безразмерной величиной. Кпд тепловых электростанций достигает 35—40%, двигателей внутреннего сгорания — 40—50%, динамомашин и генераторов большой мощности—95%, трансформаторов—98%. Кпд процесса фотосинтеза составляет обычно 6—8%, у хлореллы он достигает 20—25%. У тепловых двигателей в силу второго начала термодинамики кпд имеет верхний предел, определяемый особенностями термодинамического цикла (кругового процесса), который совершает рабочее вещество. Наибольшим кпд обладает Карно цикл.

Различают кпд отдельного элемента (ступени) машины или устройства и кпд, характеризующий всю цепь преобразований энергии в системе. Кпд первого типа в соответствии с характером преобразования энергии может быть механическим, термическим и т. д. Ко второму типу относятся общий, экономический, технический и др. виды кпд. Общий кпд системы равен произведению частных кпд, или кпд ступеней.

В технической литературе кпд иногда определяют т. о., что он может оказаться больше единицы. Подобная ситуация возникает, если определять кпд отношением Wпол/Wзатр, где Wпол — используемая энергия, получаемая на «выходе» системы, Wзатр — не вся энергия, поступающая в систему, а лишь та её часть, для получения которой производятся реальные затраты. Например, при работе полупроводниковых термоэлектрических обогревателей (тепловых насосов) затрата электроэнергии меньше количества теплоты, выделяемой термоэлементом. Избыток энергии черпается из окружающей среды. При этом, хотя истинный кпд установки меньше единицы, рассмотренный кпд  = Wпол/Wзатр может оказаться больше единицы.

Двигатель внутреннего сгорания, тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу.

Первый практически пригодный газовый Д. в. с. был сконструирован французским механиком Э. Ленуаром (1860). В 1876 немецкий изобретатель Н. Отто построил более совершенный 4-тактный газовый Д. в. с. По сравнению с паромашинной установкой Д. в. с. принципиально более прост, т. к. устранено одно звено энергетического преобразования — парокотельный агрегат. Это усовершенствование обусловило большую компактность Д. в. с., меньшую массу на единицу мощности, более высокую экономичность, но для него потребовалось топливо лучшего качества (газ, нефть).

В 1880-х гг. О. С. Костович в России построил первый бензиновый карбюраторный двигатель. В 1897 нем. инженер Р. Дизель, работая над повышением эффективности Д. в. с., предложил двигатель с воспламенением от сжатия. Усовершенствование этого Д. в. с. на заводе Л. Нобеля в Петербурге (ныне «Русский дизель») в 1898—99 позволило применить в качестве топлива нефть. В результате этого Д. в. с. становится наиболее экономичным стационарным тепловым двигателем. В 1901 в США был разработан первый трактор с Д. в. с. Дальнейшее развитие автомобильных Д. в. с. позволило братьям О. и У. Райт построить первый самолёт с Д. в. с., начавший свои полёты в 1903. В том же 1903 рус. инженеры установили Д. в. с. на судне «Вандал», создав первый теплоход. В 1924 по проекту Я. М. Гаккеля в Ленинграде был создан первый удовлетворяющий практическим требованиям поездной тепловоз.

По роду топлива Д. в. с. разделяются на двигатели жидкого топлива и газовые. По способу заполнения цилиндра свежим зарядом — на 4-тактные и 2-тактные. По способу приготовления горючей смеси из топлива и воздуха — на двигатели с внешним и внутренним смесеобразованием. К двигателям с внешним смесеобразованием относятся карбюраторные, в которых горючая смесь из жидкого топлива и воздуха образуется в карбюраторе, и газосмесительные, в которых горючая смесь из газа и воздуха образуется в смесителе. В Д. в. с. с внешним смесеобразованием зажигание рабочей смеси в цилиндре производится электрической искрой. В двигателях с внутренним смесеобразованием (дизелях)топливо самовоспламеняется при впрыскивании его в сжатый воздух, нагретый до высокой температуры.

Рабочий цикл 4-тактного карбюраторного Д. в. с. совершается за 4 хода поршня (такта), т. е. за 2 оборота коленчатого вала. При 1-м такте — впуске поршень движется от верхней мёртвой точки (в. м. т.) к нижней мёртвой точке (н. м. т.). Впускной клапан при этом открыт (рис. 1) и горючая смесь из карбюратора поступает в цилиндр. В течение 2-го такта — сжатия, когда поршень движется от н. м. т. кв. м. т., впускной и выпускной клапаны закрыты и смесь сжимается до давления 0,8—2 Мн/м2 (8—20 кгс/см2). Температура смеси в конце сжатия составляет 200—400°C. В конце сжатия смесь воспламеняется электрической искрой и происходит сгорание топлива. Сгорание имеет место при положении поршня, близком кв. м. т. В конце сгорания давление в цилиндре составляет 3—6 Мн/м2 (30—60 кгс/1см2), а температура 1600—2200°C. 3-й такт цикла — расширение называется рабочим ходом; в течение этого такта происходит преобразование тепла, полученного от сгорания топлива, в механическую работу. 4-й такт — выпуск происходит при движении поршня от н. м. т. к в. м. т. при открытом выпускном клапане. Отработавшие газы вытесняются поршнем.

Рабочий цикл 2- тактного карбюраторного Д. в. с. осуществляется за 2 хода поршня или за 1 оборот коленчатого вала (рис. 2). Процессы сжатия, сгорания и расширения практически аналогичны соответствующим процессам 4-тактного Д. в. с. При прочих равных условиях 2-тактный двигатель должен быть в 2 раза более мощным, чем 4-тактный, т. к. рабочий ход в 2-тактном двигателе происходит в 2 раза чаще, однако на практике мощность 2-тактного карбюраторного Д. в. с. часто не только не превышает мощность 4-тактного с тем же диаметром цилиндра и ходом поршня, но оказывается даже ниже. Это обусловлено тем, что значительная часть хода (20—35%) поршень совершает при открытых окнах, когда давление в цилиндре невелико и двигатель практически не производит работы; продувка цилиндра требует затрат мощности на сжатие воздуха в продувочном насосе; очистка пространства цилиндра от продуктов сгорания газов и наполнение его свежим зарядом значительно хуже, чем в 4-тактном Д. в. с.

Рабочий цикл карбюраторного Д. в. с. может быть осуществлен при очень большой частоте вращения вала (3000—7000 об/мин). Двигатели гоночных автомобилей и мотоциклов могут развивать 15 000 об /мин и более. Нормальная горючая смесь состоит примерно из 15 частей воздуха (по массе) и 1 части паров бензина. Двигатель может работать на обеднённой смеси (18: 1) или обогащенной смеси (12: 1). Слишком богатая или слишком бедная смесь вызывает сильное уменьшение скорости сгорания и не может обеспечить нормального протекания процесса сгорания. Регулирование мощности карбюраторного Д. в. с. осуществляется изменением количества смеси, подаваемой в цилиндр (количественное регулирование). Большая частота вращения и выгодные соотношения топлива и воздуха в смеси обеспечивают получение большой мощности в единице объёма цилиндра карбюраторного двигателя, поэтому эти двигатели имеют сравнительно небольшие габариты и массу [ 1—4 кг/квт (0,75—3 кг/л. с.)]. Применение низких степеней сжатия обусловливает умеренные давления в конце сгорания, вследствие чего детали можно делать менее массивными, чем, например, в дизелях. При увеличении диаметра цилиндра кароюраторного Д. в. с. возрастает склонность двигателя к детонации, поэтому карбюраторные Д. в. с. не делают с большими диаметрами цилиндров (как правило, не более 150 мм). Примером карбюраторного Д. в. с. может служить двигатель ГАЗ-21 «Волга». Это 4-цилиндровый 4-тактный двигатель, развивающий мощность 55 квт (75 л. с.)при 4000 об/мин и степени сжатия 6,7. Удельный расход топлива на наиболее экономичном режиме составляет 290 г; (квт.ч).

Наибольшая мощность 4-тактного карбюраторного Д. в. с. 600 квт (800 л. с.). Мотоциклетные карбюраторные 2-тактные и 4-тактные Д. в. с. имеют мощность от 3,5 до 45 квт (от 5 до 60 л. с.). Авиационные поршневые двигатели с непосредственным впрыском бензина и искровым зажиганием развивают до 1100 квт (1500 л. с.) и более.

Карбюраторные Д. в. с. представляют собой сложный агрегат, включающий ряд узлов и систем.

Остов двигателя — группа неподвижных деталей, являющихся базой для всех остальных механизмов и систем. К остову относятся блок-картер, головка (головки) цилиндров, крышки подшипников коленчатого вала, передняя и задняя крышки блок-картера, а также масляный поддон и ряд мелких деталей.

Механизм движения — группа движущихся деталей, воспринимающих давление газов в цилиндрах и преобразующих это давление в крутящий момент на коленчатом валу двигателя. Механизм движения включает в себя поршневую группу (поршни, шатуны, коленчатый вал и маховик).

Механизм газораспределения служит для своевременного впуска горючей смеси в цилиндры и выпуска отработавших газов. Эти функции выполняют кулачковый (распределительный) вал, приводимый в движение от коленчатого вала, а также толкатели, штанги и коромысла, открывающие клапаны. Клапаны закрываются клапанными пружинами.

Система смазки — система агрегатов и каналов, подводящих смазку к трущимся поверхностям. Масло, находящееся в масляном поддоне, подаётся насосом в фильтр грубой очистки и далее через главный масляный канал в блок-картере под давлением поступает к подшипникам коленчатого и кулачкового валов, к шестерням и деталям механизма газораспределения. Смазка цилиндров, толкателей и других деталей производится масляным туманом, образующимся при разбрызгивании масла, вытекающего из зазоров в подшипниках вращающихся деталей. Часть масла отводится по параллельным каналам в фильтр тонкой очистки, откуда сливается обратно в поддон.

Система охлаждения может быть жидкостной и воздушной. Жидкостная система состоит из рубашек цилиндров и головок, заполненных охлаждающей жидкостью (водой, антифризом и т. п.), насоса, радиатора, в котором жидкость охлаждается потоком воздуха, создаваемым вентилятором, и устройств, регулирующих температуру воды. Воздушное охлаждение осуществляется обдувом цилиндров и головок вентилятором или потоком воздуха (на мотоциклах).

Система питания осуществляет приготовление горючей смеси из топлива и воздуха в пропорции, соответствующей режиму работы, и в количестве, зависящем от мощности двигателя. Система состоит из топливного бака, топливоподкачивающего насоса, топливного фильтра, трубопроводов и карбюратора, являющегося основным узлом системы.

Система зажигания служит для образования в камере сгорания искры, воспламеняюшей рабочую смесь. В систему зажигания входят источники тока — генератор и аккумулятор, а также прерыватель, от которого зависит момент подачи искры. В систему включается распределитель тока высокого напряжения по соответствующим цилиндрам. В одном агрегате с прерывателем находятся конденсатор, улучшающий работу прерывателя, и катушка зажигания, с которой снимается высокое напряжение (12—20 кв). В то время, когда Д. в. с. не имели электрического зажигания, применялись запальные калоризаторы.

Система пуска состоит из электрического стартёра, шестерён передачи от стартёра к маховику, источника тока (аккумулятора) и элементов дистанционного управления. В функции системы входит вращение вала двигателя для пуска.

Система впуска и выпуска состоит из трубопроводов, воздушного фильтра на впуске и глушителя шума на выпуске.

Газовые Д. в. с. работают большей частью па природном газе и газах, получаемых при производстве жидкого топлива. Кроме того, могут быть использованы: газ, генерируемый в результате неполного сгорания твёрдого топлива, металлургические газы, канализационные газы и пр. Применяются как 4-тактные, так и 2-тактныс газовые Д. в. с. По принципу смесеобразования и воспламенения газовые двигатели разделяются на: Д. в. с. с внешним смесеобразованием и искровым зажиганием, в которых рабочий процесс аналогичен процессу карбюраторного двигателя; Д. в. с. с внешним смесеобразованием и зажиганием струей жидкого топлива, воспламеняющегося от сжатия; Д. в. с. с внутренним смесеобразованием и искровым зажиганием. Газовые двигатели, использующие природные газы, применяются на стационарных электростанциях, компрессорных газоперекачивающих установках и т. п. Сжиженные бутано-пропановые смеси используются для автомобильного транспорта (см. Газобаллонный автомобиль).

Экономичность работы Д. в. с. характеризуется эффективным кпд, который представляет собой отношение полезной работы к количеству тепла, выделяемого при полном сгорании топлива, затраченного на получение этой работы. Максимальный эффективный кпд наиболее совершенных Д. в. с. около 44%.

Основным преимуществом Д. в. с., так же как и др. тепловых двигателей (например, реактивных двигателей), перед двигателями гидравлическими и электрическими является независимость от постоянных источников энергии (водных ресурсов, электростанций и т. п.), в связи с чем установки, оборудованные Д. в. с., могут свободно перемещаться и располагаться в любом месте. Это обусловило широкое применение Д. в. с. на транспортных средствах (автомобилях, с.-х. и строительно-дорожных машинах, самоходной военной технике и т. п.).

Совершенствование Д. в. с. идёт по пути повышения их мощности, надёжности и долговечности, уменьшения массы и габаритов, создания новых конструкций (см., например, Ванкеля двигатель). Можно наметить также такие тенденции в развитии Д. в. с., как постепенное замещение карбюраторных Д. в. с. дизелями на автомобильном транспорте, применение многотопливных двигателей, увеличение частоты вращения и др.

Двигатель внутреннего сгорания (ДВС)

Один из самых распространенных двигателей — двигатель внутреннего сгорания (ДВС). Его устанавливают на автомобили, корабли, тракторы, моторные лодки и т. д., во всем мире насчитываются сотни миллионов таких двигателей. Существует два типа двигателей внутреннего сгорания — бензиновые и дизели.

Бензиновые двигатели внутреннего сгорания работают на жидком топливе (бензине, керосине и т. п.) или на горючем газе (сохраняемом в сжатом виде в стальных баллонах или добываемом сухой перегонкой из дерева). Проектируют двигатели, где горючим будет водород.

Основная часть ДВС — один или несколько цилиндров, внутри которых происходит сжигание топлива. Отсюда и название двигателя.

Внутри цилиндра скользит поршень — металлический стакан, опоясанный пружинящими кольцами (поршневые кольца), вложенными в канавки на поршне. Поршневые кольца не пропускают газов, образующихся при сгорании топлива, в промежутки между поршнем и стенками цилиндра.

Поршень снабжен металлическим стержнем — пальцем, он соединяет поршень с шатуном. Шатун передает движения поршня коленчатому валу (см. рис.).

Верхняя часть цилиндра сообщается с двумя каналами, закрытыми клапанами. Через один из каналов — впускной подается горючая смесь, через другой — выпускной удаляются продукты сгорания. В верхней части цилиндра помещается свеча — приспособление для зажигания горючей смеси посредством электрической искры.

Наибольшее распространение в технике получил четырехтактный двигатель. Рассмотрим его работу. 1-й такт — впуск (всасывание). Открывается впускной клапан. Поршень, двигаясь вниз, засасывает в цилиндр горючую смесь. 2-й такт — сжатие. Впускной клапан закрывается. Поршень, двигаясь вверх, сжимает горючую смесь, при сжатии она нагревается. 3-й такт — рабочий ход. Поршень достигает верхнего положения. Смесь поджигается электрической искрой свечи. Сила давления газов — раскаленных продуктов горения — толкает поршень вниз. Движение поршня передается коленчатому валу, вал поворачивается, производится тем самым полезная работа. Производя работу и расширяясь, продукты сгорания охлаждаются, давление в цилиндре падает почти до атмосферного. 4-й такт — выпуск (выхлоп). Открывается выпускной клапан, отработанные продукты сгорания выбрасываются через глушитель в атмосферу.

Из 4 тактов двигателя только один, третий — рабочий. Поэтому двигатель снабжают маховиком, инерционным двигателем, запасающим энергию, за счет которой коленчатый вал (см. Валы и оси машин) вращается в течение остальных тактов. Отметим, что одноцилиндровые двигатели устанавливают главным образом на мотоциклах. На автомобилях, тракторах и т. п. для более равномерной работы ставят 4,6,8 и более цилиндров на общем валу.

Двигатели с цилиндрами, установленными в виде звезды вокруг одного вала, получили название звездообразных. Мощность звездообразных двигателей достигает 4 МВт. Используют их главным образом в авиации.

Дизель — другой тип двигателя внутреннего сгорания. В отличие от бензинового воспламенение в его цилиндрах происходит при впрыскивании топлива в воздух, предварительно сжатый поршнем и, следовательно, нагретый до высокой температуры.

Этот двигатель назвали по имени немецкого инженера Р. Дизеля, построившего в 1897 г. первый двигатель с воспламенением от сжатия — в этом и заключается его отличие от бензинового двигателя внутреннего сгорания, использующего особое устройство для воспламенения топлива.

Конструктивно дизель мало чем отличается от бензинового двигателя внутреннего сгорания. На рисунке видно, что у него есть цилиндр, поршень, клапаны. Да и принцип действия дизеля такой же. Но есть и отличия: в головке цилиндра находится топливный клапан — форсунка. Назначение ее — в определенные фазы вращения коленчатого вала впрыскивать топливо в цилиндр. Клапаны, топливный насос, питающий форсунку, получают движение от распределительного вала, который, в свою очередь, приводится в движение от коленчатого вала двигателя.

Пусть начальным положением поршня будет верхняя мертвая точка. При движении поршня вниз (первый такт) открывается впускной клапан, через который в цилиндр засасывается воздух. Впускной клапан при обратном ходе поршня закрывается и в продолжение всего второго такта остается закрытым.

В цилиндре дизеля происходит сжатие воздуха (в бензиновом двигателе внутреннего сгорания на этой фазе сжимается горючая смесь). Степень сжатия в дизелях в 2—2,5 раза больше, вследствие чего температура воздуха в конце сжатия поднимается до температуры, достаточной для воспламенения топлива. В момент подхода поршня в верхнюю мертвую точку начинается подача топлива в цилиндр из форсунки. Попадая в горячий воздух, мелкораспыленное топливо самовозгорается. Сгорание топлива (в третьем такте) происходит не сразу, как в бензиновых двигателях внутреннего сгорания, г постепенно, в продолжение некоторой части хода поршня вниз; объем пространства в цилиндре, где топливо сгорает, увеличивается. Поэтому давление газов во время работы форсунки остается постоянным.

Когда поршень возвращается в нижнюю мертвую точку, открывается выпускной клапан 8 давление газов сразу падает, после чего заканчивается четвертый такт, поршень возвращается в верхнюю мертвую точку. Цикл далее повторяется.

Дизель экономичнее бензинового двигателя внутреннего сгорания, он работает на дешевых видах топлива. Дизель относится к наиболее экономичным тепловым двигателям; tro кпд достигает 44%. Сконструированы и построены двигатели мощностью до 30 000 кВт. Дизели используются главным образом в качестве главных и вспомогательных судовых двигателей, на передвижных электростанциях, на тепловозах, тракторах, грузовиках.

Будете ли вы трактористом, машинистом, шофером или просто автолюбителем, вы обязательно познакомитесь с работой двигателей внутреннего сгорания. Но уже более детально.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...