Устройство и рабочий процесс гидромуфты
Гидравлические машины и передачи План лекции 4.1. Гидродинамические передачи 4.1.1. Гидравлические муфты 4.1.1.1. Устройство и рабочий процесс гидромуфты 4.1.1.2. Характеристики гидромуфты Гидравлические трансформаторы Устройство и рабочий процесс гидравлического трансформатора Гидродинамические передачи Гидропередача – это устройство для передачи механической энергии посредством потока жидкости. В состав гидропередачи входят насос, гидравлический двигатель и соединительные трубопроводы с рабочей жидкостью. Гидропередачи, использующие динамические гидромашииы, называются гидродинамическими. В гидродинамических передачах применяют лопастные насосы и, в качестве гидравлических двигателей, лопастные турбины. В реальных конструкциях лопастный насос и гидравлическая турбина предельно сближены и располагаются соосно в общем корпусе. Так как эти две гидромашины имеют общий корпус, то в дальнейшем насос будем называть насосным колесом, а турбину – турбинньм колесом. В такой конструкции отсутствуют трубопроводы, поэтому жидкость из насосного колеса сразу попадает на лопатки турбинного колеса, а из турбинного – вновь на лопатки насосного колеса. Гидродинамические передачи, применяемые в машиностроении, подразделяют на гидравлические муфты (гидромуфты) и гидравлические трансформаторы (гидротрансформаторы). Гидромуфты, состоящие из насосного и турбинного колес, служат для передачи энергии без изменения крутящего момента, т. е. моменты на входном и выходном валах гидромуфты практически одинаковы. Гидротрансформаторы, кроме насосного и турбинного колес, имеют хотя бы одно дополнительное колесо. Оно на большинстве режимов работы неподвижно, т.е. является неактивным (реактивным), и поэтому его принято называть реактором. Включение в состав гидротрансформатора реактора позволяет ему изменять (трансформировать) передаваемый крутящий момент. Таким образом, моменты на входном и выходном валах гидротрансформатора на большинстве режимов работы различны.
На современных транспортных и самоходных машинах получили широкое применение комплексные гидротрансформаторы. Комплексным называют гидротрансформатор, который в широком диапазоне изменения своих передаточных отношений работает как гидротрансформатор, а при больших значениях передаточных отношений переходит в режим гидромуфты и работает как гидромуфта. Это позволяет существенно повысить его коэффициент полезного действия. Гидравлические муфты Устройство и рабочий процесс гидромуфты Основными элементами гидравлической муфты являются два соосно установленных лопастных колеса: насосное и турбинное, а также корпус, подшипники и другие детали. На рис. 4.1 приведена схема одной из возможных конструкций гидромуфт. На осевом разрезе гидромуфты (рис. 4.1,а) показаны насосное колесо Н, турбинное колесо Т и корпус гидромуфты К. У большинства муфт конструкция лопастных колес однотипна и представляет собой половину торообразной полости с плоскими радиально расположенными лопатками Рис. 4.1. Конструктивная схема гидромуфты: а) осевой разрез; б) развертка лопастной системы Насосное колесо Н приводится во вращение двигателем с угловой скоростью w1. Жидкость, находящаяся в межлопастном пространстве насосного колеса, раскручивается вместе с ним и центробежными силами отбрасывается от оси вращения к периферии колеса (от точки 1 к точке 2 на рис. 4.1, а). Участвуя во вращательном движении вместе с насосным колесом, частицы жидкости приобретает кинетическую энергию и скорость в направлении движения этого колеса. Далее в окрестностях точки 2 жидкость перемещается с насосного колеса Н на турбинное колесо Т.
В межлопаточном пространстве турбинного колеса Т частицы жидкости оказывают воздействие на его лопатки и заставляют его вращаться с угловой скоростью w2. Вращаясь вместе с турбинным колесом, частицы жидкости постепенно отдают ему кинетическую энергию, полученную в насосном колесе. При этом они перемещаются от периферии колеса к его оси вращения (от точки 2 к точке 1 на рис. 4.1, а). В окрестностях точки 1 жидкость переходит с турбинного колеса Т на насосное колесо Н. Далее рабочий процесс повторяется, т.е. жидкость циркулирует в межлопаточном пространстве колес по замкнутому контуру с массовым расходом Q'm, Учитывая, что описанный рабочий процесс имеет сложную пространственную траекторию движения частиц жидкости, для его пояснения на рис. 4.1, б приведена условная развертка колес гидромуфты. На этой развертке показана траектория движения одной частицы жидкости. На рис. 4.1, б видно, как эта частица перемещается вдоль плоской лопатки насосного колеса от точки 1 к точке 2. В точке 2 она «срывается» с насосного колеса, имея абсолютную скорость V2, и с такой же скоростью V2 "ударяет" в точке 2' по лопатке турбинного колеса. Далее частица жидкости перемещается вдоль лопатки турбинного колеса от точки 2' до точки 1' и в точке 1' уходит с турбинного колеса, имея абсолютную скорость V1. В точке 1 эта частица попадает в межлопаточное пространство насосного колеса с такой же абсолютной скоростью V1. Далее рабочий процесс повторяется. Характеристики гидромуфты Для анализа характеристик гидромуфты рассмотрим ее работу на установившемся режиме. В этом случае сумма моментов, приложенных к гидромуфте извне, должна равняться нулю, т.е. M1 – М2 – Mс =0, где M1 – момент на валу насосного колеса; М2 – момент на валу турбинного колеса; Мс – момент сопротивления. Момент сопротивления Мс вызван трением в узлах гидромуфты. Наибольшее влияние на него оказывает трение вращающихся колес о воздух (в ряде конструкций вращающимся является также корпус). В большинстве эксплуатационных режимов момент Mc мал, и им можно пренебречь. Тогда
M1 = M2 = M. (4.1) Зависимость (4.1) подтверждает равенство моментов на насосном и турбинном колесах. Передаваемый гидромуфтой момент M1, изменяется в зависимости от соотношения угловых скоростей насосного w1 и турбинного w2 колес. На рис. 4.2 приведены два варианта (I и II) зависимости передаваемого момента M от передаточного отношения i гидромуфты . (4.2) Рис. 4.2. Характеристика гидромуфты
Из анализа графиков M = f (i) на рис. 4.2 следует, что при больших передаточных отношениях i величина передаваемого момента M уменьшается, а при i ® 1 резко падает до нулевой величины. Приведённая зависимость M = f(i) при w1 =const называется характеристикой гидромуфты. Характеристика гидромуфты, кроме М = f(i), включает также зависимость ее КПД от передаточного отношения h =f(i). КПД найдем из отношения выходной мощности на турбинном колесе N2 к входной – на насосном колесеN1. Тогда с учетом зависимостей (4.1) и (4.2) получим . (4.3) Таким образом, пренебрегая величиной момента сопротивления Mс, можно считать, что КПД гидромуфты равен ее передаточному отношению. Зависимость h =f(i) нанесена на рис. 4.2. Формула (4.3) получена при допущении, что момент сопротивления Mс мал, и поэтому им можно пренебречь. Это является целесообразным в широком диапазоне изменения передаточного отношения i (участок ОЕ зависимости h= f (i) на рис. 4.2). Но при i 1 это недопустимо, так как в области больших i резко падает передаваемый момент, а при i = iP он становится соизмеримым с моментом сопротивления Мс. В этом случае формула (4.3) становится неприемлемой, а КПД гидромуфты из-за момента сопротивления Mс резко падает – участок EF на зависимости h = f (i). Режим максимального КПД гидромуфты (95 – 98 % – точка Е на рис. 4.2) принято считать расчетным. Момент МP и передаточное отношение iр, соответствующие этому режиму, также считают расчетными.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|