Вывод основного уравнения аэродинамики
Вокруг нас так много необыкновенного, что можно открывать новое в окружающем нас мире, лишь используя логику и здравый смысл. В физике, изучающей законы природы, до сих пор есть огромные белые пятна, например, не сформулированы основные законы физики в самых разных разделах. Например, до сих пор не сформулированы основные законы аэрогидростатики и аэрогидродинамики. В аэрогидродинамике есть необъяснимое, с точки зрения физики, но очень важное физическое явление – возникновение подъёмной силы крыла самолёта. Подъёмная сила крыла самолёта возникает при его обтекании воздухом. Основной закон аэродинамики должен объяснять это физическое явление, но он впервые сформулирован только в этой публикации. Известно, что чем выше скорость потока воздуха вдоль поверхности крыла, тем меньше давление воздуха на крыло, но не известно, почему это происходит. Этот пробел теории легко устранить самостоятельно. Для этого нужно вывести основное уравнение аэрогидродинамики, которое объяснит причину возникновения этого физического явления, и покажет взаимную зависимость трёх основных величин аэродинамики - полного давления газа, динамического давления и статического давления. При отсутствии движения газа относительно твёрдой поверхности давление газа является вектором, направленным перпендикулярно к поверхности. Если мы приложим усилие, и начнем двигать газ относительно поверхности или с усилием проталкивать газ через трубку, наши усилия не пропадут даром. Возникнет малопонятный физический эффект: чем быстрее газ будет двигаться, тем меньшее давление его молекулы будут оказывать на поверхность. Причина возникновения этого эффекта до сих пор не объяснена.
Сейчас в физике есть уравнение, частично объясняющее это физическое явление, это уравнение для движения идеальной несжимаемой жидкости (без внутреннего трения), выведенное швейцарским физиком Д. Бернулли (опубликовано в 1738 г.). Это уравнение выведено из закона сохранения энергии всего для двух из трёх величин - динамического и статического давлений. Его невозможно применять для газа, поскольку несжимаемых газов не бывает. Очень странно, что уравнение Бернулли почти за три века своего существования так и не было преобразовано в основной закон аэродинамики, поскольку задача достаточно проста, нужно просто изменить подход. Самое простое и наглядное решение этой задачи возможно при помощи векторной алгебры. В аэродинамике мы имеем дело с векторами (давление это сила, с которой газ давит на единицу площади). У нас есть три вектора: 1. Статическое давление на поверхность 2. Динамическое давление движения газа 3. Полное давление газа
Рис. 1
Для движения газа вдоль поверхности можно составить векторное уравнение:
Т.е. полное давление равно сумме динамического и статического давления. Из рисунка видно, что чем больше мы прикладываем усилие для движения газа относительно поверхности, чем больше динамическое давление Если в уравнение (1) поставить значение динамического давления
где
Если сравнить уравнение (2) с уравнением Бернулли (3), то увидим удивительное сходство:
Закон Бернулли Материал из Википедии — свободной энциклопедии Перейти к: навигация, поиск Закон Бернулли является следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости: Здесь
В научной литературе закон Бернулли, как правило, называется уравнением Бернулли [1](не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли [2][3] или интегралом Бернулли [4][5]. Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока. Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления (см. приводимый в приложении вывод уравнения Бернулли) и не представляет собой запаса какого-либо специального вида энергии («энергии давления»[6]). Соотношение, близкое[7] к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли. В современном виде интеграл был получен Иоганном Бернулли около 1740 года. Для горизонтальной трубы Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.
Полное давление состоит из весового Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики. Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.
Одно из применений Закон Бернулли можно применить к истечению идеальной несжимаемой жидкости через малое отверстие в боковой стенке или дне широкого сосуда. Закон Бернулли позволяет объяснить эффект Вентури: в узкой части трубы скорость течения жидкости выше, а давление меньше, чем на участке трубы большего диаметра, в результате чего наблюдается разница высот столбов жидкости Согласно закону Бернулли приравняем полные давления на верхней поверхности жидкости и на выходе из отверстия:
где
Отсюда:
Часто уравнение Бернулли записывается в виде: где
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|