Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Основные характеристики вычислительной техники

 

К основным характеристикам вычислительной техники относятся ее эксплуатационно-технические характеристики, такие, как быстродействие, емкость памяти, точность вычислений и др.

Быстродействие ЭВМ рассматривается в двух аспектах. С одной стороны, оно характеризуется количеством элементарных операций, выполняемых центральным процессором в секунду. Под элементарной операцией понимается любая простейшая операция типа сложения, пересылки, сравнения и т. д. С другой стороны, быстродействие ЭВМ существенно зависит от организации ее памяти. Время, затрачиваемое на поиск необходимой информации в памяти, заметно сказывается на быстродействии ЭВМ.

В зависимости от области применения выпускаются ЭВМ с быстродействием от нескольких сотен тысяч до миллиардов операций в секунду. Для решения сложных задач возможно объединение нескольких ЭВМ в единый вычислительный комплекс с требуемым суммарным быстродействием.

Наряду с быстродействием часто пользуются понятием производительность. Если первое обусловлено, главным образом, используемой в ЭВМ системой элементов, то второе связано с ее архитектурой и разновидностями решаемых задач. Даже для одной ЭВМ такая характеристика, как быстродействие, не является величиной постоянной. В связи с этим различают: пиковое быстродействие, определяемое тактовой частотой процессора без учета обращения к оперативной памяти; номинальное быстродействие, определяемое с учетом времени обращения к оперативной памяти; системное быстродействие, определяемое с учетом системных издержек на организацию вычислительного процесса; эксплуатационное, определяемое с учетом характера решаемых задач (состава операций или их «смеси»).

Емкость, или объем памяти определяется максимальным количеством информации, которое можно разместить в памяти ЭВМ. Обычно емкость памяти измеряется в байтах. Как уже отмечалось, память ЭВМ подразделяется на внутреннюю и внешнюю. Внутренняя, или оперативная память, по своему объему у различных классов машин различна и определяется системой адресации ЭВМ. Емкость внешней памяти из-за блочной структуры и съемных конструкций накопителей практически неограниченна.

Точность вычислений зависит от количества разрядов, используемых для представления одного числа. Современные ЭВМ комплектуются 32- или 64-разрядными микропроцессорами, что вполне достаточно для обеспечения высокой точности расчетов в самых разнообразных приложениях. Однако, если этого мало, можно использовать удвоенную или утроенную разрядную сетку

Система команд — это перечень команд, которые способен выполнить процессор ЭВМ. Система команд устанавливает, какие конкретно операции может выполнять процессор, сколько операндов требуется указать в команде, какой вид (формат) должна иметь команда для ее распознания. Количество основных разновидностей команд невелико. С их помощью ЭВМ способны выполнять операции сложения, вычитания, умножения, деления, сравнения, записи в память, передачи числа из регистра в регистр, преобразования из одной системы счисления в другую и т. д. При необходимости выполняется модификация команд, учитывающая специфику вычислений. Обычно в ЭВМ используется от десятков до сотен команд (с учетом их модификации). На современном этапе развития вычислительной техники используются два основных подхода при формировании системы команд процессора. С одной стороны, это традиционный подход, связанный с разработкой процессоров с полным набором команд, — архитектура CISC (Complete Instruction Set Computer — компьютер с полным набором команд). С другой стороны, это реализация в ЭВМ сокращенного набора простейших, но часто употребляемых команд, что позволяет упростить аппаратные средства процессора и повысить его быстродействие — архитектура RISC (Reduced Instruction Set Computer — компьютер с сокращенным набором команд).

Стоимость ЭВМ зависит от множества факторов, в частности от быстродействия, емкости памяти, системы команд и т.д. Большое влияние на стоимость оказывает конкретная комплектация ЭВМ и, в первую очередь, внешние устройства, входящие в состав машины. Наконец, стоимость программного обеспечения ощутимо влияет на стоимость ЭВМ.

НадежностьЭВМ — это способность машины сохранять свои свойства при заданных условиях эксплуатации в течение определенного промежутка времени. Количественной оценкой надежности ЭВМ, содержащей элементы, отказ которых приводит к отказу всей машины, могут служить следующие показатели:

- вероятность безотказной работы за определенное время при данных условиях эксплуатации;

- наработка ЭВМ на отказ;

- среднее время восстановления машины и др.

Для более сложных структур типа вычислительного комплекса или системы понятие «отказ» не имеет смысла. В таких системах отказы отдельных элементов приводят к некоторому снижению эффективности функционирования, а не к полной потере работоспособности в целом.

Большое значение имеют и другие характеристики вычислительной техники, например: универсальность, программная совместимость, вес, габариты, энергопотребление и др. Они принимаются во внимание при оценивании конкретных сфер применения ЭВМ.

 

5. Перспективы развития вычислительных средств

 

Появление новых поколений ЭВМ обусловлено расширением сферы их применения, требующей более производительной, дешевой и надежной вычислительной техники. В настоящее время стремление к реализации новых потребительских свойств ЭВМ стимулирует работы по созданию машин пятого и последующего поколений. Вычислительные средства пятого поколения, кроме более высокой производительности и надежности при более низкой стоимости (что обеспечено новейшими электронными технологиями) должны удовлетворять качественно новым функциональным требованиям:

- работать с базами знаний в различных предметных областях и организовывать на их основе системы искусственного интеллекта;

- обеспечивать простоту применения ЭВМ путем реализации эффективных систем ввода-вывода информации голосом, диалоговой обработки информации с использованием естественных языков, устройств распознавания речи и изображения;

- упрощать процесс создания программных средств путем автоматизации синтеза программ.

В настоящее время ведутся интенсивные работы как по созданию ЭВМ пятого поколения традиционной (неймановской) архитектуры, так и по созданию и апробации перспективных архитектур и схемотехнических решений. На формальном и прикладном уровнях исследуются архитектуры на основе параллельных абстрактных вычислителей (матричные и клеточные процессоры, систолические структуры, однородные вычислительные структуры, нейронные сети и др.). Развитие вычислительной техники с высоким параллелизмом во многом определяется элементной базой, степенью развития параллельного программного обеспечения и методологией распараллеливания алгоритмов решаемых задач.

Проблема создания эффективных систем параллельного программирования, ориентированных на высокоуровневое распараллеливание алгоритмов вычислений и обработки данных, представляется достаточно сложной и предполагает дифференцированный подход с учетом сложности распараллеливания и необходимости синхронизации процессов во времени.

Наряду с развитием архитектурных и системотехнических решений ведутся работы по совершенствованию технологий производства, интегральных схем и по созданию принципиально новых элементных баз, основанных на оптоэлектронных и оптических принципах.

В плане создания принципиально новых архитектур вычислительных средств большое внимание уделяется проектам нейрокомпьютеров, базирующихся на понятии нейронной сети (структуры на формальных нейронах), моделирующей основные свойства реальных нейронов. В случае применения био- или опто-элементов могут быть созданы соответственно биологические или оптические нейрокомпьютеры. Многие исследователи считают, что в следующем веке нейрокомпьютеры в значительной степени вытеснят современные ЭВМ, используемые для решения трудно формализуемых задач. Последние достижения в микроэлектронике и разработка элементной базы на основе биотехнологий дают возможность прогнозировать создание биокомпьютеров.

Важным направлением развития вычислительных средств пятого и последующих поколений является интеллектуализация ЭВМ, связанная с наделением ее элементами интеллекта, интеллектуализацией интерфейса с пользователем и др. Работа в данном направлении, затрагивая, в первую очередь, программное обеспечение, потребует и создания ЭВМ определенной архитектуры, используемых в системах управления базами знаний, - компьютеров баз знаний, а так же других подклассов ЭВМ. При этом ЭВМ должна обладать способностью к обучению, производить ассоциативную обработку информации и вести интеллектуальный диалог при решении конкретных задач.

 


Заключение

В процессе написания реферата мы ознакомились с:

- поколениями языков программирования;

- понятием архитектуры ЭВМ;

- структурой и принципами функционирования ЭВМ;

- основными характеристиками вычислительной техники;

- перспективами развития вычислительных средств.

 


 

Литература

 

1. Абрамов С.А., Зима Е.В. Начала программирования на языке Паскаль. - М.: Наука, 1987;

2. Абрамов С.А., Зима Е.В. Начала информатики. - М.: Наука, 1988;

3. Дагене В.А., Григас Г.К., Аугутис К.Ф. 100 задач по программированию. - М.:, Просвещение, 1993;

4. Довгаль С.И., Литвинов Б.Ю., Сбитнев А.И. Персональные ЭВМ: Турбо-Паскаль V7.0, Объектное программирование, Локальные сети. (Учебное пособие).- Киев, «Информсистема сервис», 1993;

5. Епанешников А.М., Епанешников В.А. Программирование в среде Turbo-Pascal 7.0.- М.:, Диалог МИФИ, 1993;

6. Ильина М.М. Работа в Word 7.0 на примерах. - М.: Восточная книжная компания, 1996;

7. Йенсен К., Вирт Н. Паскаль: Руководство для пользователя. /Пер. с англ. М.Л.Сальникова, Ю.В.Сальниковой. - М.:, Компьютер, 1993;

8. Microsoft Windows 95.Шаг за шагом: Практическое пособие. /Пер.с англ.- М.: ЭКОМ, 1996;

9. Новиков Ф.,А., Яценко А.,Д. Microsoft Office в целом. - СПб.: ВHV-Санкт-Петербург, 1995;

10. Перминов О.Н. Программирование на языке Паскаль. - М.: Радио и связь, 1988;

11. Поляков Д.Б., Круглов Н.Ю. Программирование в среде Турбо-Паскаля. - изд.МАИ., М.:, 1992;

12. Прайс Д. Программирование на языке Паскаль. Практическое руководство. /Пер. с англ. - М.:, Мир, 1987;

13. Семашко Г.Л., Салтыков А.И. Программирование на языке Паскаль. - М.: Наука. Гл. ред. физ.-мат. лит.,1993;

14. Фаронов В.В. Турбо-Паскаль. Начальный курс – 1 кн. Практика программирования –2 кн. Учебное пособие. - М.: «Нолидж»,1997;

15. Фигурнов В.Э. - IBM PC для пользователя. - М.: Финансы и статистика,1995;

16. Эрбс Х.-Э., Штольц О. Введение в программирование на языке Паскаль./Пер. с нем. - М.:, Мир, 1989;

17. Хелворсон М.,Янг М. Эффективная работа с Microsoft Office 95 /Пер. с англ. - СПб: Питер, 1996.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...