Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Направление реакций окисления-восстановления.

ЛАБОРАТОРНАЯ РАБОТА №8.

РЕАКЦИИ ОКИСЛЕНИЯ - ВОССТАНОВЛЕНИЯ

 

Работу выполнил_____________________ Работу принял____________________

Дата выполнения_____________________ Отметка о зачете__________________

Введение.

 

Реакции, связанные с изменением степени окисления атомов в молекулах реагирующих веществ, называются окислительно-восстановительными.

Степень окисления - условный электрический заряд атома в химическом соединении (вычисленный в предположении, что все электроны, участвующие в образовании химической связи, полностью смещены к более электроотрицательному атому).

Для определения степени окисления атомов в химическом соединении используют следующие правила:

1) степень окисления атомов в простых веществах (напр.: Na, Cl2, O3) равна нулю;

2) степень окисления одноатомного иона (напр.: Na+, Cl-, Zn2+, Al3+) равна его заряду;

3) степень окисления металлов всегда положительна;

4) характерные степени окисления в соединениях проявляют следующие элементы:

- щелочные металлы (+1),

- щелочноземельные металлы (+2),

- бор, алюминий (+3), кроме боридов металлов

- фтор (-1), самый электроотрицательный элемент

- водород (+1), кроме гидридов металлов

- кислород (-2), кроме пероксидов, надпероксидов, озонидов, и соединений с фтором;

5) сумма зарядов (степеней окисления) всех атомов в молекуле равна нулю (условие электронейтральности).

 

ПРИМЕР 1.

Определить степени окисления атомов в бихромате калия K2Cr2O7

Степень окисления щелочного металла калия (+1), степень окисления кислорода (-2), степень окисления хрома обозначим Х. Составляем уравнение электронейтральности: 2(+1) + 2 Х+7 (-2) = 0.

Решаем уравнение относительно Х: получаем степень окисления хрома (+6).

Процесс повышения степени окисления - отдачи электронов -называется окислением. Процесс понижения степени окисления - присоединение электронов - называется восстановлением.

Вещества, атомы которых окисляются (отдают электроны), называются восстановителями, вещества, присоединяющие электроны - окислителями.

Окислителем может быть вещество, атомы которого способны понижать степень окисления (принимать электроны), поэтому типичными окислителями являются вещества, содержащие атомы в наивысшей степени окисления. Типичными восстановителями являются вещества, содержащие атомы в низшей степени окисления. Вещества с атомами в одной из промежуточных степеней окисления для данного элемента могут проявлять как окислительные, так и восстановительные свойства.

ПРИМЕР 2.

H2SO4 максимальная степень окисления серы (+6): только окислитель

H2S минимальная степень окисления серы (-2): только восстановитель

H23 промежуточная степень окисления серы (+4): и окислитель, и восстановитель.

Составление уравнений окислительно-восстановительных реакций.

Для окислительно-восстановительных реакций, протекающих в водных растворах используют метод ионно-электронных уравнений (рассмотрим на примере реакции бихромата калия с нитритом натрия в кислой среде).

Метод ионно-электронных уравнений включает следующий порядок составления уравнений:

1) записываем схему реакции в молекулярной форме:

K2Cr2O7 + NaNO2 + H2SO4 ® Cr2(SO4)3 + NaNO3 + K2SO4 + H2O

2) составляем схему реакции в ионно-молекулярной форме по общим правилам (сильные электролиты записываем в виде ионов, слабые электролиты, газы и осадки - в виде молекул):

2K+ + Cr2O72- + Na+ + NO2- + 2H+ + SO42- ® 2Cr3+ + 3SO42- + Na+ + NO3- + 2K+ + SO42- + H2O

3) определяем элементы, изменяющие степени окисления, из ионно-молекулярной схемы реакции выписываем частицы (выделены), содержащие атомы этих элементов (т.е. окислитель и восстановитель) и составляем схемы отдельно процессов окисления и восстановления:

Cr2O72- ® 2 Cr3+

NO2- ® NO3-

4) составляем уравнения отдельно процессов окисления и восстановления, пользуясь следующими правилами:

для реакции в кислой среде: в ту часть уравнения, которая содержит меньшее число атомов кислорода, прибавляем эквивалентное число молекул воды, в противоположную часть - удвоенное количество ионов Н +;

для реакции в щелочной (и нейтральной ) среде: в ту часть уравнения, которая содержит меньше атомов кислорода, прибавляем ионы ОН - из расчета два иона ОН - на каждый недостающий атом кислорода, в противоположную часть - вдвое меньшее количество молекул воды;

в рассматриваемом случае реакция идет в кислой среде, поэтому получаем:

Cr2O72- + 14 H+ ® 2Cr3+ + 7 H2O

NO2- + H2O ® NO3- + 2 H+

5) рассчитываем суммарный заряд левых и правых частей уравнений и прибавляем необходимое количество электронов в соответствующую часть уравнения с тем, чтобы суммарное число и знак электрических зарядов слева и справа от знака равенства в каждом уравнении были равны:

+12 + 6

х 1 Cr2O72- + 14 H+ + 6 е- = 2 Cr3+ + 7 H2O восстановление

х 3 NO2- + H2O = NO3- + 2 H+ + 2 е- окисление

- 1 +1

6) подбираем наименьшие коэффициенты для полученных уравнений, руководствуясь тем, что общее число электронов, отдаваемых восстановителем, должно быть равно числу электронов, присоединяемых окислителем; с учетом этих коэффициентов складываем полученные уравнения:

Cr2O72- + 14 H+ + 3 NO2- + 3 H2O = 2 Cr3+ + 7 H2O + 3 NO3- + 6 H+

7) производим сокращение одинаковых членов в левой и правой частях уравнения, при этом получаем сокращенное ионное уравнение заданной реакции:

Cr2O72- + 8 H+ + 3 NO2- = 2 Cr3+ + 4 H2O + 3 NO3-

8) по полученному ионному уравнению составляем молекулярное уравнение реакции (расставляем коэффициенты в исходном молекулярном уравнении):

K2Cr2O7 + 3 NaNO2 + 4 H2SO4 = Cr2(SO4)3 + 3 NaNO3 + K2SO4 + 4 H2O

9) проверяем правильность полученных коэффициентов; рекомендуется делать проверку "по кислороду" (число атомов кислорода в правой и левой частях уравнения должно быть одинаково).

Направление реакций окисления-восстановления.

Процессы окисления и восстановления неразрывны друг от друга и протекают всегда одновременно. Окислитель, присоединяя электроны, превращается в соответствующий восстановитель, и каждому восстановителю соответствует определенный окислитель. Таким образом, окислитель(О) и восстановитель (В) образуют сопряженную окислительно-восстановительную пару, равновесие между компонентами которой выражается схемой:

О + n e- Û B (*)

Можно сформулировать общий принцип, определяющий окислительно-восстановительные свойства пары О/В: чем сильнее окислитель, тем слабее восстановитель и, наоборот.

Относительная активность различных окислителей и восстановителей количественно характеризуется величиной стандартного электродного потенциала Е°о/в*): чем выше значение Е°о/в, тем сильнее окислитель и тем слабее восстановитель пары О/В.

Кроме этого, окислительно-восстановительные свойства пары зависят от концентраций окислителя (Со), восстановителя (Св) и температуры в соответствии с уравнением Нернста:

Eо/в = E°о/в + (RT/n) ln Cо/Cв = E° + (0.059/n) lg Cо/Cв, (1)

-------------------------------------------------------------------------------------------------------------------------------

*) стандартный электродный потенциал определяется как электродвижущая сила гальванического элемента, построенного из электрода, содержащего компоненты данной окислительно-восстановительной пары при их концентрациях 1моль/л и стандартного водородного электрода, потенциал которого по определению равна нулю.

 

Окислительно-восстановительные процессы подчиняются общим законам термодинамики, т.е. могут протекать самопроизвольно при выполнении условия: DG < 0.

Изменение энергии Гиббса реакции связано с ЭДС (Е) гальванического элемента, в котором идет данная окислительно-восстановительная реакция, соотношением: DG = - n F E, (2)

где F = 96500 Кл/моль - постоянная Фарадея. Учитывая это, условие возможности самопроизвольного протекания окислительно-восстановительной реакции может быть записано в виде:

Е = Еок - Евос > 0 или Еок > Евос (3)

Иными словами, окислительно-восстановительная реакция возможна, если электродный потенциал пары, содержащей данный окислитель, больше электродного потенциала пары, содержащей данный восстановитель.

Значения стандартных электродных потенциалов приводятся в термодинамических таблицах

(см. ПРИЛОЖЕНИЕ).

ПРИМЕР 3.

Определить возможность протекания реакции между растворами бихромата калия и нитритом натрия (разобрана в предыдущем разделе).

Выписываем уравнения отдельно процессов окисления и восстановления и величины электродных потенциалов, соответствующие этим окислительно-восстановительным парам:

окислитель Cr2O72- + 14 H+ + 6 е- = 2 Cr3+ + 7 H2O восстановление Е0Cr O +14H /2Cr +7H O = 1,33 В

восстановитель NO2- + H2O = NO3- + 2 H+ + 2 е- окисление Е0 NO +2H / NO +H O = 0,84 В

Сопоставляя значения потенциалов (см. соотношение 3), делаем вывод, что Cr2O72- более сильный окислитель, чем NO3-, следовательно данная реакция может протекать самопроизвольно в прямом направлении.

Экспериментальная часть.

ОПЫТ 1. Окислительные и восстановительные свойства химических соединений.

Рассматривается возможность протекания реакции между перманганатом калия KMnO4 и двумя соединениями серы Na2SO3 и Na2SO4 в кислой среде:

1). KMnO4 + Na2SO3 + H2SO4

2). KMnO4 + Na2SO4 + H2SO4

Протекание реакции фиксируется по изменению фиолетовой окраски раствора.

В 2 пробирки внесите по 3 капли раствора KMnO4 и 1-2 капли раствора H2SO4. В одну пробирку добавьте 4-5 капель раствора Na2SO3 , в другую - столько же раствора Na2SO4.

1) Отметьте признаки реакции.

2) Определите степени окисления марганца и серы в исследуемых соединениях. Исходя из этого определите роль каждого соединения в реакциях окисления-восстановления и объясните результаты опыта.

3) Методом электронно-ионных уравнений составьте уравнение реакции:


ОПЫТ 2. Направление реакций окисления-восстановления. Вытеснение водорода из кислот.

Рассматривается возможность протекания окислительно-восстановительной реакции вытеснения молекулярного водорода из раствора серной кислоты металлами - цинком и медью.

1). Zn + H2SO4 =

2). Cu + H2SO4 =

Образование водорода определяется визуально по выделению пузырьков газа.

В одну пробирку поместите гранулу цинка, в другую - медную проволоку или стружку. В обе пробирки добавьте по 5-6 капель раствора (1 моль/л) серной кислоты.

1) Допишите указанные реакции, отметьте признаки реакций и сделайте выводы об их протекании. 2) Напишите электронно-ионные реакции окисления-восстановления для исследуемых металлов и водорода, выпишите значения электродных потенциалов.

3) Сделайте вывод о возможности протекания данных реакций.

4) Сформулируйте общее правило вытеснения металлами водорода из растворов кислот.

 

 

ОПЫТ 3. Реакции диспропорционирования.

Реакции диспропорционирования (самоокисления-самовосстановления) представляют собой особый тип реакций, в которых и окислителем, и восстановителем являются атомы элементов с промежуточной степенью окисления в молекуле одного и того же вещества.

Рассматривается реакция диспропорционирования пероксида водорода: Н2О2 ®Н2О + О2. Кислород в Н2О2 находится в промежуточной степени окисления (-1), поэтому может быть как окислителем, так и восстановителем.

Реакция протекает в присутствии катализатора - диоксида марганца. Протекание реакции определяется по образованию газообразного кислорода, выделение которого вызывает возгорание тлеющей лучинки. Опыт проводится под тягой в присутствии преподавателя.

1) Составьте ионно-электронные уравнения окисления и восстановления пероксида водорода.

2) Выпишите (см. приложение) значения стандартных электродных потенциалов окислительно-восстановительных пар, в которые пероксид водорода входит в качестве окислителя и в качестве восстановителя.

3) Сделайте вывод о возможности самопроизвольного разложения пероксида водорода.


ОПЫТ 4. Влияние характера среды на особенности протекания реакций окисления-восстановления.

Изучается характер взаимодействия окислителя KMnO4 и восстановителя Na2SO3 в кислой, нейтральной и щелочной средах.

В зависимости от величины рН раствора окислитель MnO4- восстанавливается до Mn2+ (в кислой среде), MnO2 (в нейтральной среде) и MnO42- (в сильно-щелочной среде).

 

Исходный раствор рН среды Признаки реакции Продукты реакции
  KMnO4 + Na2SO3 + H2SO4 рН < 7    
  KMnO4 + Na2SO3 + H2O рН = 7    
  KMnO4 + Na2SO3 + КОН рН > 7    

 

В три пробирки внесите 3-4 капли раствора KMnO4. В первую пробирку для создания кислой среды внесите 1-2 капли раствора (1 моль/л) H2SO4, во вторую для создания щелочной среды 5-6 капель концентрированного раствора КОН, в третьей среда останется нейтральной. В каждую из трех пробирок добавьте 3-4 капли раствора Na2SO3.

1)В таблице отметьте признаки протекания и состав продуктов реакций в каждом случае.

2) Методом электронно-ионных уравнений составьте уравнения проведенных реакций:

2.1) KMnO4 + Na2SO3 + H2SO4

2.2) KMnO4 + Na2SO3 + H2O

2.3) KMnO4 + Na2SO3 + КОН


Вариант предлабораторного теста.

 

I. Определите степень окисления хлора в KClO

1) +3 2) +5 3) +7 4) +1

II. Укажите процессы восстановления

1) S4+ = S6+ + 2e- 2) Br7+ + 8e- = Br- 3) Ag = Ag+ + e- 4) Cr2+ + 2e- = Cr

III. Какие свойства в реакциях окисления-восстановления может проявлять S

1) окислитель 2) восстановитель 3) и окислитель и восстановитель

IV. Какая окислительно-восстановительная пара содержит наиболее сильный восстановитель

1) H3РO3+3H+/P+3H2O, E°= -0.5 B 2) Na+/Na, E°= -2.71 B 3) Zn2+/Zn, E°= -0.76 B

V. Укажите реакции окисления-восстановления

1) AgNO3 + KOH ® Ag2O + H2O + KNO3 2) Zn(OH)2 + HCl ® ZnCl2 + H2O

3) MnS + HNO3 ® S + NO + Mn(NO3)2 + H2O 4) Fe(NO3)3 + Al ® Fe + Al(NO3)3

VI. Определите тип процесса и сколько электронов (n) в нем участвует Br 7+ ® Br -

1) n = 6, окисление 2) n = 6, восстановление 3) n = 8, окисление 4) n = 8, восстановление

VII. Определите X в процессе S4+ = SX + 2e-

1) +4 2) +2 3) +6 4) - 2

VIII. Определите n e- в процессе PbO2 + 4H+ + ne- = Pb2+ + 2H2O

1) 4 2) 3 3) 2 4) 1

IX. Определите n H+ в процессе Mn2+ + 2H2O = MnO2 + nH+ + 2e-

1) 3 2) 2 3) 1 4) 4

X. Определите n OH- в процессе Si + n OH- = SiO32- + 3H2O + 4e-

1) 6 2) 3 3) 4 4) 2

 

Правильные ответы выделены жирным шрифтом.

 

Контрольные вопросы.

I. Определите, какую роль - окислителя или /и восстановителя - могут играть в реакциях окисления-

восстановления следующие частицы:

1) PO43-, PO33- 2) Сl-, ClO2- 3) NO, NO3- 4) S2-, SO2 5) Sn, SnO2

II. Составьте электронно-ионные уравнения взаимного превращения частиц (см. п. I) в кислой, нейтральной и щелочной средах.

III. Методом электронно-ионных уравнений составьте уравнение реакции:

1) NO2+H2O®HNO3+NO 2) Br2+H2O® HBr+HBrO3 3) MnO2+KOH® KMnO4+Mn(OH)2

4) HClO3 ® HCl + HClO4 5) P + H2O® H3PO3

Определите возможность самопроизвольного протекания реакции.


ПРИЛОЖЕНИЕ.

Стандартные электродные потенциалы окислительно-восстановительных пар 250С

Окислитель Восстановитель ne- E0о/в, В
К+ К I e - 2,92
Na+ Na I e -2,71
Mn2+ Mn 2 e -1,18
Zn2+ Zn 2 e -0,76
Fe2+ Fe 2 e -0,44
Ni2+ Ni 2 e -0,25
Sn2+ Pb2+ 2H+ Sn Pb H2 2 e 2 e 2 e -0,14 -0,13
Cu2+ Cu 2 e 0,34
Br2 2Br - 2 e 1,09
2BrO3-+12H+ Br2+6H2O 10 e 1,52
J2 2J- 2 e 0,54
2JO3-+6H2O J2+12OH- 10 e 0,21
NO3-+2H+ NO2+2H+ O2+2H+ NO2+H2O NO+H2O H2O2 I e 2 e 2 e 0,74 1,07 0,68
H2O2+2H+ 2H2O 2 e 1,78
MnO2+2H2O Mn(OH)2+2OH- 2 e -0,5
MnO4-+2H2O MnO2+4OH- 3 e 0,6
Окислитель Восстановитель ne- E0о/в, В
P+3H2O PH3+3OH- 3 e -0,89
H3PO3+3H+ P+3H2O 3 e -0,5
       
ClO3-+6H+ Cl-+3H2O 6 e 1,45
ClO4-+2H+ ClO3-+H2O 2 e 1,19
S2O82- 2SO42- 2 e 2,01

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...