Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Перекристаллизация стали (превращения в твердом состоянии).




Основа этих превращений - полиморфное превращение ГЦК →ОЦК и изменение растворимости углерода в аустените и феррите при изменении температуры. Рассмотрим как происходит перекристаллизация типовых сплавов. В сплаве I (техническое железо) при t1 при пересечении линии GS начинается, а при пересечении линии QP заканчивается полиморфное превращение А ®Ф и образуется структура Ф. При пересечении линии PQ вследствие уменьшения растворимости углерода в феррите, из него выделяется Ц (рис. 6.3). Конечная структура Ф+Ц, свойства такого медленного охлажденного сплава практически не отличаются от свойств Ф, т.к. Ц очень мало.

Сплав III. При температуре 727 0 С (S) аустенит пересыщен и железом и углеродом и при некотором переохлаждении из него одновременно начинают выделяться кристаллы Ф и Ц - начинается эвтектоидное превращение. Ведущая фаза (образ первой) является цементит. Превращение начинается на границах зерен аустенита. Образовавшаяся структура II - обладает высокой прочностью и сравнительно низкой пластичностью. Превращение возможно при содержании в аустените 0,8%С.

Сплав II - при охлаждении ниже t1 начинается полиморфное превращение: образуется низкоуглеродистая фаза феррит, а в оставшемся аустените содержание углерода растет и при t2 достигает 0,8%. При последующем охлаждении и окончательная структура - Ф + П - сплав с удовлетворительной прочностью и хорошей пластичностью.При температуре t1 аустенит пересыщен углеродом и из него начинает выделяться высокоуглеродистая фаза Ц, при t2 в аустените остается 0,8% С до окончательного охлаждения. Получаемая структура после охлаждения структура обладает высокой прочностью, но низкой пластичностью. Конечная структура формируется при перекристаллизации и определяется содержанием в ней углерода.

КРИСТАЛЛИЗАЦИЯ И ПЕРЕКРИСТАЛЛИЗАЦИЯ ЧУГУНОВ

Белые чугуны

В структуре высокоуглеродистых сплавов, кристаллизующихся по метастабильной системе, нет свободного углерода. Излом их светлый, поэтому такие чугуны называются белыми.

Рассмотрим превращение характерных сплавов V-VIII (рис.7.1).

Сплав VI - эвтектический. При приближении к tl в жидкости возникают гетерогенные флуктуации близкие по строению к аустентной и цементитной фазам, жидкость пересыщена железом и углеродом. При некотором переохлаждении ниже tl (11470 С) из жидкости начинают кристаллизоваться обе фазы -происходит эвтектическое превращение. Образовавшаяся эвтектика (бикристалл) называется ледебуритом. Ведущая фаза - цементит, модель бикристалла - дерн. При дальнейшем охлаждении до t2 существенных изменений не происходит: выделяется из аустенита небольшое количество цементита вследствие уменьшения растворимости углерода в аустенитной фазе. Этот цементит структурно обнаруживается только после специального теплового травления. Ниже 7270 С аустенит ледебурита превращается в перлит. Окончательная структура - ледебурит - (П + Ц), который иногда называют видоизмененным ледебуритом Л. Сплав как и все белые чугуны обладает высокой твердостью (65% Ц) и хрупкостью.

Сплав V - доэвтектический. При пониженной температуре ниже tl из жидкости кристаллизуется А, при t2 в оставшейся жидкости имеется 4,3% С, и при дальнейшем охлаждении происходит эвтектическое превращение. При охлаждении от t1 до t3 из аустенита выделяется цементит, а при температуре ниже 7270 С (t3) происходит эвтектоидное превращение. Окончательная структура доэвтектического белого чугуна представляет собой перлит,цементит и ледебурит.

Сплав УП - заэвтектический. Из жидкости ниже tl до кристаллизуется высокоуглеродистая фаза цементит Ц I(цифра I говорит о том, что он образовался из жидкости). При tS состав жидкости соответствует точке С и при дальнейшем охлаждении вплоть 200 С существенных изменений в структуре нет, и после эвтектоидного превращения она состоит из ледебурита и цементита первичного.

Таким образом, структура белого чугуна зависит от содержания в нем углерода и формируется в процессе первичной кристаллизации. Перекристаллизация существенно структуру не меняет.

Белые чугуны используются главным образом как передельные чугуны.

Доэвтектический белый чугун, содержащий 2,2 - 2,9%С используется для получения ковкого чугуна, эвтектический белый чугун (легкоплавкий; жидкотекучий) - для получения чугунной дроби, заэвтектический - очень твердый и износостойкий - для отливки шаров, шаровых мельниц.

 

Серые чугуны

Структурным признаком серого чугуна является обязательное присутствие графита в структуре серого чугуна, который придает излому серый цвет.

Образование из жидкости аустенита, графита и дальнейший распад аустенита на феррит и графит соответствует минимальному значению свободной энергии, т.е. наиболее стабильному равновесию. При медленном охлаждении, когда кристаллизация проходит в интервале температур 1152-11470 С термодинамически более выгодно образование графита. В этом случае кристаллизация происходит по стабильной диаграмме. Отдельные линии, а следовательно и точки, смещаются, а некоторые линии обеих диаграмм совпадают (рис.7.2). Кристаллизация сталей по стабильной диаграмме в большинстве случаев ни чем не отличается от кристаллизации по метастабильной диаграмме, только вместо цементита будет формироваться графитная фаза.

Серый чугун обладает низким комплексом механических свойств: низкие прочностные свойства и практически нулевые пластические (главным образом из-за формы графитных включений: хлопьевидные в ковком чугуне и пластинчатые в обычном сером). Однако этот чугун дешев, обладает высокой жидкотекучестью, малой усадкой, хорошо гасит колебания (высокие демпфирующие свойства).В двадцатые годы был создан новый вид чугуна, в котором резко изменена форма графитных включений, что позволило приблизить его свойства к свойствам стали при сохранении высоких технологических свойств серого чугуна, этот чугун назвали высокопрочным (ВЧ).

Получают его путем модифицирования серого чугуна редкоземельными металлами (Mg, Се) или их лигатурами. Под действием модификатора происходит сфероидизация графитных включений, что приводит к повышению прочности до 1000 МПа (sв) и появлению пластичности до 5-10%.

Модификатор обеспечивает глубокую десульфурацию и раскисление, а также выравнивание скорости роста графитных зародышей в различенных направлениях.

Шаровидная форма графита меньше ослабляет металлическую основу по сравнению с графитом в виде пластин, влияющих как острые надрезы.

Высокопрочный чугун также как обычный серый и ковкий, может быть на ферритно-перлитной и перлитной основе.

Ковкий чугун является старым машиностроительным материалом. Его получают из доэвтектического белого чугуна (2,2 - 3,0%С) путем термической обработки. Отливки из белого чугуна подвергают графитизирующему отжигу.

При высоких температурах цементит метастабилен и разлагается по реакции. После первой стадии графитизации получаем структуру А+Г. В зависимости от условий охлаждения можно получить структуру П + Г - перлитный ковкий чугун (повышенная прочность) до 450 МПа и пониженная пластичность, или Ф + Г - ферритный ковкий чугун (прочность 300 - 400 МПа, удлинение 6-12%).

Образующийся графит более компактный, чем в сером чугуне, его называют хлопьевидным графитом или углеродом отжига.

Серый чугун широко используется в станкостроении (станины, коробки, колонны и т.д.), т.к. хорошо работает на сжатие. Высокопрочный чугун - в автостроении, дизелестроении для ряда ответственных изделий (колен, валы, распределительные валики, опоры подшипников и т.д.).

Все чугуны гостированы. ГОСТы определяют их химический состав и основные свойства.

Влияние примесей.

Чугуны как и стали многокомпонентные системы. Примеси могут оказывать существенное влияние на структурообразование чугунов, особенно такие как Si, Mn, S, Р.

Кремний. Очень сильный графитизатор, т.е. в сильной степени способствует выделению углерода как из жидкой фазы так и из аустенита и разложению цементита. В литейных чугунах кремния 0,8 - 4,0%.

Марганец. Карбидообразующий элемент (Mn), препятствует выделению свободного углерода, т.е. способствует получению белого чугуна. Нейтрализует влияние серы, выводя ее из твердого раствора (MnS). Обычное содержание в сером чугуне – 0,5 – 0,8%.

Сера - придает чугуну, как и стали, красноломкость - малый удельный вес - всплывает и удаляется вместе со шлаком. Содержание серы в сером чугуне не должно превышать 0,08%, в высокопрочном - <0.03%.

Фосфор - в чугуне иногда до 1%. Может быть полезной примесью.Он увеличивает жидкотекучесть, способствует хорошему заполнению формы.

 

8.ТЕРМИЧЕСКАЯ ОБРАБОТКА СТАЛИ.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...