Этапы решения графического метода задач линейного программирования
Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется в основном при решении задач двумерного пространства и только некоторых задач трехмерного пространства, так как довольно трудно построить многогранник решений, который образуется в результате пересечения полупространств. Задачу пространства размерности больше трех изобразить графически вообще невозможно. Пусть задача линейного программирования задана в двумерном пространстве, т. е. ограничения содержат две переменные. Если в ЗЛП ограничения заданы в виде неравенств с двумя переменными, она может быть решена графически. Графический метод решения ЗЛП состоит из следующих этапов. Этап 1. Сначала на координатной плоскости x 1 Ox 2 строится допустимая многоугольная область (область допустимых решений, область определения), соответствующая ограничениям:
Не приводя строгих доказательств, укажем те случаи, которые тут могут получится. 1. Основной случай - получающаяся область имеет вид ограниченного выпуклого многоугольника (рис. 3а)). 2. Неосновной случай - получается неограниченный выпуклый многоугольник, имеющий вид, подобный изображенному на рис. 3.б. Подобная ситуация, например, получится, если в рассмотренном выше примере убрать ограничение . Оставшаяся часть будет неограниченным выпуклым многоугольником.
Наконец, возможен случай, когда неравенства (1.31) противоречат друг другу, и допустимая область вообще пуста. Рассмотрим теорию на конкретном примере: Найти допустимую область задачи линейного программирования, определяемую ограничениями
Решение: 1. Рассмотрим прямую . При , а при . Таким образом, эта прямая проходит через точки (0,1) и (-1,0). Беря получим, что -0+0<1 и поэтому интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.а. 2. Рассмотрим прямую . При , а при. Таким образом, эта прямая проходит через точки (0, -1/2) и (1,0). так как (4.б). 3. Наконец, рассмотри м прямую . Она проходит через точки (0,3) и (3,0) и так как 0+0<3, то интересующая нас полуплоскость лежит ниже прямой, изображенной на рис. 4.в. Сводя все вместе и добавляя условия получим рисунок 5, где выделена область, в которой выполняются одновременно все ограничения (1.32). Обратите внимание на то, что получившаяся область имеет вид выпуклого многоугольника. Этап 2. Вернёмся теперь к исходной задаче линейного программирования. В ней, кроме системы неравенств, есть еще целевая функция .
Рассмотрим прямую . Будем увеличивать L. Что будет происходить с нашей прямой? Легко догадаться, что прямая будет двигаться параллельно самой себе в том направлении, которое дается вектором , так как это - вектор нормали к нашей прямой и одновременно вектор градиента функции . А теперь сведем всё вместе. Итак, надо решить задачу Oграничения задачи вырезают на плоскости некоторый многоугольник. Пусть при некотором L прямая пересекает допустимую область. Это пересечение дает какие-то значения переменных , которые являются планами. Этап 3 Увеличивая L мы начнем двигать нашу прямую и её пересечение с допустимой областью будет изменяться (см. рис. 7). В конце концов эта прямая выйдет награницу допустимой области - как правило, это будет одна из вершин многоугольника. Дальнейшее увеличение L приведёт к тому, что пересечение
прямой с допустимой областью будет пустым. Поэтому то положение прямой , при котором она вышла на граничную точку допустимой области, и даст решение задачи, а соответствующее значение L и будет оптимальным значением целевой функции.
1.4 Примеры задач, решаемых графическим методом. Пример: Решить задачу
Решение Допустимую область мы уже строили - она изображена на рис. 5. Повторим еще раз этот рисунок, оставив только допустимую область и
Пусть, например, L =2. Тогда прямая проходит через точки (2,0) и (0,1) и изображена на рис. 8. Будем теперь увеличивать L. Тогда прямая начнёт двигаться параллельно самой себе в направлении, указанном стрелкой. Легко догадаться, что максимальное значение L получится тогда, когда прямая пройдет через вершину многоугольника, указанную на рисунке, и дальнейшее увеличение L приведет к тому, что прямая выйдет за пределы многоугольника и её пересечение с допустимой областью будет пустым. Выделенная вершина лежит на пересечении прямых и поэтому имеет координаты . Это и есть решение нашей задачи, т.е. есть оптимальный план задачи (1.41). При этом значение целевой функции , что и дает её максимальное значение. Обратите внимание на то, что оптимальный план, как правило, соответствует какой-то вершине многоугольника, изображающего допустимую область. И лишь в том случае, когда прямая случиться так, что решение не будет единственным. Но и в этом случае вершины, соответствующие границам этой стороны, дают оптимальные планы нашей задачи линейного программирования. Таким образом, вершины допустимой области играют в решении задач линейного программирования особую роль.
Ну, а если допустимая область неограничена, то и значение целевой функции может быть неограниченным. Подводя итог этим примерам, можно сформулировать следующие положения: 1. допустимая область - это выпуклый многоугольник; 2. оптимум достигается в вершине допустимой области (если допустимая область ограничена и не пуста); 3. ограниченность целевой функции в допустимой области является необходимым и достаточным условием разрешимости задачи.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|