Расскажите об энергетике мышечных волокон.
Виктор Селуянов. Тренировки по науке. Часть первая.
Автор: Андрей Антонов
Сегодняшней публикацией мы открываем цикл бесед с профессором Виктором Николаевичем Селуяновым посвященный современным биологически обоснованным научным методам тренировок. Сразу скажу, что многие поклонники «железной игры» воспримут ряд положений в штыки. Слишком разительно отличаются научные методы от общепринятых в силовом мире положений, считающихся незыблемыми. С поразительной легкостью Виктор Николаевич разбивает устоявшиеся стереотипы, но делает это с убийственной логикой, основанной на глубоких знаниях анатомии, физиологии и биохимии. Поэтому не спешите бросать чтение, и возвращаться к трудам практиков. Поверьте, наука, особенно, если она использует для вывода положений умозрительные и математические модели, смотрит в «корень», объясняет причины явлений. Вот только связь передовой науки и практики пока оставляет желать лучшего. Переиздаются давно морально устаревшие учебники теории и методики физической культуры и спорта. Труды Матвеева, Зациорского, Верхошанского, грешат эмпирическим подходом, поэтому содержат формально-логические рекомендации без биологического обоснования. И это не вина авторов, на момент написания ими своих трудов не было такого объема биологической информации, методов исследования, технического оборудования, как сейчас, и им приходилось додумывать, выдвигать гипотезы, которые потом перешли в разряд устоявшихся положений, хотя изначально они не были обоснованы теоретически. И эти некорректные обобщения переписываются из учебника в учебник на протяжении более полувека, а современные научные биологические исследования так и остаются в узкоспециализированных научных изданиях и не выходят не только на массового читателя, но даже на издателей книг по спортивным темам. И пропасть между теорией – биологическими науками, и практикой продолжает увеличиваться. Сегодня мы начнем с азов. Мы не будем детально изучать строение, биологию и биохимию клетки, но ряд основных положений нам надо разобрать, чтобы понимать, какие процессы происходят в мышцах под воздействием различных тренировок. Надо построить модели систем и органов человека и на этой основе описывать и предсказывать адаптационные процессы. Итак, начнем…
Виктор Николаевич, хотелось бы начать разговор с основных понятий, необходимых нам для понимания биологических процессов в мышце.
Начнем с клетки. Мышечная клетка, или как ее еще называют, мышечное волокно представляет собой большую клетку имеющую форму удлиненного цилиндра и по длине чаще всего соответствующей длине целой мышцы и диаметром от 12 до 100 мкм. Группы мышечных волокон образуют пучки, которые, в свою очередь, объединяются в целую мышцу, помещенную в плотный чехол соединительной ткани, переходящей на концах мышцы в сухожилия, крепящиеся к кости.
Сократительным аппаратом мышечного волокна являются специальные органеллы — миофибриллы, которые у всех животных имеют примерно равное поперечное сечение, колеблющееся от 0,5 до 2 мкм. Число миофибрилл в волокне достигает двух тысяч. Состоят миофибриллы из последовательно соединенных саркомеров, каждый из которых включает нити (миофиламенты) актина и миозина. Миозин крепится к ЗЕТ пластинкам титином. При растяжении мышцы титин растягивается и может порваться, что приводит к разрушению миофибриллы, усилению катаболизма. Между филаментами актина и миозина могут образовываться мостики и при затрате энергии, заключенной в АТФ, может происходить поворот мостиков, т.е. сокращение миофибриллы, сокращение мышечного волокна, сокращение мышцы и разрыв его. Основная энергия молекул АТФ тратится именно на разрыв мостиков. Мостики образуются в присутствии в саркоплазме ионов кальция. Увеличение количества миофибрилл (гиперплазия) в мышечном волокне приводит к увеличению поперечного сечения (гипертрофии), а, следовательно, силы и скорости сокращения при преодолении существенной внешней нагрузки. Удельная сила, приходящаяся на поперечное сечение мышечных волокон у всех людей примерно одинаковая, будь — то старушка или суперпаурлифтер.
Кроме миофибрилл огромное значение для нас имеют такие органеллы как митохондрии, энергетические станции клетки, в которых с помощью кислорода идет превращение жиров или глюкозы в углекислый газ (СО2), воду и энергию, заключенную в молекулах АТФ. Для увеличения мышечной массы и силы нам необходимо увеличивать количество миофибрилл в мышечных волокнах, а для увеличения выносливости – количество в них митохондрий.
Расскажите об энергетике мышечных волокон.
Обычно описываются энергетические процессы в организме, т.е. весь организм представляется в виде пробирки, в которой разворачиваются биохимические процессы. Поэтому, логически корректно — в соответствии с принятой моделью, рождаются представления о МПК, АнП одинаковые для всех видов упражнений, а причиной появления АнП недостаток кислорода в крови. Однако, совершенно ясно, что биохимические процессы в организме идти не могут, они могут идти в определенных клетках. Поэтому интерпретация физиологических явлений с применением простейшей модели ведет к ошибочным представлениям. Увеличение сложности модели расширяет круг явлений, доступных к корректной интерпретации.
Биоэнергетические процессы проходят в клетках. В клетке энергия используется только в виде аденозинтрифосфорной кислоты (АТФ). Освобождение энергии заключенной в АТФ, осуществляется благодаря ферменту АТФ-аза, которая имеется во всех местах, где требуется энергия. Именно по активности этого фермента в головках миозина мышечные волокна разделяют на быстрые и медленные. Активность миозиновой АТФ-азы предопределена ДНК, а информация о строительстве быстрой или медленной изоформы АТФ-азы зависит от частоты приходящих к МВ импульсов от мотонейронов спинного мозга. От размера мотонейрона зависит максимальная частота импульсации, поскольку размер мотонейрона поменять невозможно, то мышечная композиция наследуется и практически не меняется под действием тренировочного процесса. С помощью электростимуляции можно временно изменить мышечную композицию.
Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков. Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Энергия АТФ в основном требуется для разъединения. Для очередного гребка требуется новая молекула АТФ. В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее.
Доказательством использования АТФ для расцепления актин-миозиновых мостиков являются эксперименты с определением энергозатрат при подъеме по лестнице и спуске. При подъеме вверх КПД составляет 20–23%, а при спуске метаболические затраты практически исчезают, остаются затраты только на уровне покоя – основного обмена. Поэтому, при той же механической мощности, КПД на спуске превышает 100%. Это означает, что при выполнении эксцентрических упражнений (растяжение мышц разгибателей коленного сустава) механическая энергия тратится на разрыв актин-миозиновых мостиков, а химическая энергия молекул АТФ не тратится. Причем правильно тренированная мышца после таких упражнений не болит, следовательно, разрушений в мышечных волокнах не происходит.
Количество АТФ в миофибриллах хватает на одну–две секунды высокоинтенсивной работы. Под воздействием миозиновой АТФ-азы АТФ распадается на АДФ, фосфор, высвобождая большое количество энергии и ион водорода. Но с первой же секунды работы в мышце разворачивается процесс ресинтеза миофибриллярных АТФ за счет КрФ. Креатинфосфат распадается на головке миозина, поскольку там же имеется фермент креатифосфокиназа. Образуется свободный креатин, фосфор и энергия, достаточная для соединения АДФ, фосфора, иона водорода. Молекулы АТФ крупные, поэтому они не могут перемещаться по клетке. Перемещаются по клетке КрФ, Кр, Ф. Это явление назвали креатинфосфатным шунтом. Ресинтез КрФ может выполняться только с помощью молекул АТФ. Митохондриальные молекулы АТФ ресинтезируют КрФ, а АДФ, Ф и ион водорода проникают обратно в митохондрию. Молекулы АТФ, ресинтезируемые в ходе гликолиза, могут также использоваться для ресинтеза КрФ.
Воспользуйтесь поиском по сайту: