Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Перечень лабораторных работ




1. Основные классы неорганических соединений.

2. Строение атома.

3. Химическая термодинамика.

4. Окислительно-восстановительные реакции.

5. Гальванические элементы.

6. Электролиз.

7. Коррозия металлов.

Вопросы к экзамену

1. Квантовые числа: главное и орбитальное. Энергетические уровни и подуровни.

2. Квантовые числа: магнитное и спиновое. Энергетические уровни, подуровни и орбитали.

3. Формы s- и р-орбиталей.

4. Принципы формирования электронных оболочек атомов: принцип Паули, правило Хунда, принцип минимума энергии.

5. Максимальная заселённость электронами энергетических подуровней.

6. Электронные формулы строения атомов элементов. Графическое изображение электронного строения атомов.

7. Ковалентная неполярная химическая связь.

8. Ковалентная полярная химическая связь.

9. Ионная химическая связь.

10. Способы перекрывания электронных облаков: s-связи и p-связи

11. Гибридизация атомных орбиталей и строение молекул.

12. Первый закон термодинамики. Закон Гесса и следствие из него.

13. Расчёт изменения энтальпии реакции и теплового эффекта по стандартным энтальпиям вещества.

14. Расчёт изменения энтропии реакции. Энтропийно выгодные и невыгодные реакции.

15. Свободная энергия Гиббса и её изменение в ходе реакций.

16. Межмолекулярные окислительно-восстановительные реакции.

17. Внутримолекулярные окислительно-восстановительные реакции.

18. Реакции самоокисления-самовосстановления (диспропорционирования).

19. Окислительно-восстановительные реакции. Окислители и восстановители.

20. Электродные потенциалы. Уравнение Нернста.

21. Ряд напряжений металлов.

22. Гальванический элемент Вольта.

23. Электродвижущая сила гальванических элементов.

24. Гальванический элемент Якоби-Даниэля.

25. Концентрационный гальванический элемент.

26. Электрохимическая коррозия. Деполяризация.

27. Коррозия при контакте двух металлов.

28. Коррозия под каплей воды.

29. Защита металлов от коррозии.

30. Электролиз расплавов и растворов электролитов. Инертный и растворимый аноды.

31. Законы электролиза.

32. Скорость химической реакции. Кинетические уравнения. Уравнение Аррениуса. Колебательные реакции.

33. Гомогенный и гетерогенный катализ. Ферментативный катализ.

34. Химическое равновесие. Константа равновесия.

35. Смещение химического равновесия. Принцип Ле Шателье.

36. Фазовые равновесия. Правило фаз Гиббса. Диаграммы состояния.

37. Дисперсные системы: грубодисперсные системы, коллоидные растворы, истинные растворы. Свойства коллоидных растворов.

38. Концентрация растворов. Законы идеальных растворов.

39. Растворы электролитов. Вода как растворитель. РН среды.

40. Углерод. Алмаз, графит, карбин. Стеклоуглерод и углеволокно.

41. Кремний. Кремнезем. Силикаты. Стекло. Стекловолокно. Стеклопластики.

42. Легкие конструкционные металлы: Be, Mg, Al, Ti.

43. Тяжелые конструкционные металлы: Cr, Mn, Fe, Co, Ni, Cu.

44. Основные классы органических соединений.

45. Олигомеры и полимеры. Классификация, получение, свойства, применение.

46. Биохимические системы: углеводы, жиры, белки, нуклеиновые кислоты.

47. Мембраны и мембранные технологии.

48. Биотехнология. Достижения, основные направления и перспективы развития.

49. Химический анализ. Физико-химический и физический анализ.

50. Роль химии в решении экологических проблем.

Л И Т Е Р А Т У Р А

1. Коровин Н.В. Общая химия. – М.: Высш. школа. 2000.

2. Глинка Н.Л. Общая химия. - Л.: Химия, 1983 -1988 гг.

3. Ахметов Н.С. Общая и неорганическая химия. - М.: Высш. школа, 1985.

4. Фролов В.В. Химия. - М.: Высш. школа. 1979.

5. Глинка Н.Л. Задачи и упражнения по общей химии.- Л.: Химия, 1985.

6. Химия: Методические указания и контрольное задание. - Л.: СЗПИ, 1990.

 

КОНТРОЛЬНЫЕ ЗАДАНИЯ

 

Тема 1. Строение атома и периодическая система элементов Д.И.Менделеева

Литература: [1] c.17-34; [2] с. 47-102; [3] с.10-40.

 

Теоретические основы

 

Атом химического элемента состоит из положительного ядра и двигающихся в поле его действия отрицательно заряженных электро­нов. Сам атом является электронейтральной частицей. Ядро атома состоит из нуклонов: протонов (условный заряд +1; массовое число 1) и нейтронов (заряд 0; массовое число 1). Заряд ядра ра­вен порядковому номеру элемента в периодической системе Менде­леева и совпадает с числом протонов. Массовое число ядра (сумма количества протонов и нейтронов: А = Z + N) примерно определяет относительную массу атома по причине легкости электронов (электрон в 1840 раз легче протона).

Состояние электронов в атоме волновую природу и согласно квантовой (или волновой) механике описывается плотностью веро­ятности обнаружения электрона в данной области пространства от­носительно ядра. Граничная поверхность, внутри которой располо­жена область наибольшей вероятности обнаружения электрона, на­зывается атомной орбиталью. Атомная орбиталь характеризуется па­раметрами, которые получили название квантовых чисел: n - главное квантовое число описывает энергию и размеры атомной орбитали; l - орбитальное квантовое число - форму орбитали; m -магнитное квантовое число - ее ориентацию в пространстве.

Условная запись, которая представляет распределение электронов по энергетическим уровням и подуровням (атомным орбиталям), называется электронной формулой атома. Для написания электрон­ной формулы, в которой с помощью квантовых чисел зашифровано состояние каждого электрона необходимо знать:

- систему обозначений;

- последовательность заполнения подуровней электронами (принцип наименьшей энергии);

- максимальную ёмкость каждого подуровня (принцип Паули).

Система обозначений в общем виде выглядит так: nlx , где n - главное квантовое число, соответствующее номеру энергетического уровня; l - орбитальное квантовое число - подуровню, который обозначается буквами s, p, d или f; х -количество электронов в данном квантовом состоянии. Например, запись 3d5 (читается: три дэ пять) означает, что пять электронов находятся на d -подуровне третьего энергетического уровня.

Первый энергетический уровень (n = 1) состоит из одного s -по­дуровня, второй энергетический уровень (n = 2) - из s - и p -поду­ровней, при n = 3 имеем три подуровня: s -, p - и d -, а при n = 4 - четыре: s -, p -, d - и f -подуровни. Последовательность запол­нения энергетических подуровней имеет вид: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 5d=4f, 6p, 7s, 6d=5f,...

Максимальная ёмкость энергетических подуровней: s - два электрона; p - шесть; d - десять; f - четырнадцать. Заполне­ние последующих энергетических подуровней происходит только после полной застройки предыдущих. Например, электронная фор­мула углерода имеет вид:

С 1s22s22p2.

Валентными электронами атома считаются электроны внешнего энергетического уровня, а также предпоследнего d -подуровня, если он заполнен частично. В атоме углерода валентными являются электроны второго энергетического уровня: С 2s22p2. В атоме марганца (электронная формула Mn 1s22s22p63s23p63d54s2) к ва­лентным относятся 7 электронов: два на подуровне 4s и пять на подуровне 3d.

Электронное строение атома можно представить также в виде схемы, в которой электронная орбиталь символически представлена квантовой ячейкой, а собственный спиновый момент электрона - стрелкой, направление которой соответствует значению спинового квантового числа (стрелка вверх +1/2, стрелка вниз -1/2):

 

При распределении электронов по квантовым ячейкам следует руково­дствоваться принципом Паули и правилом Хунда. В каждой ячейке мо­жет быть не более двух электронов с противоположными спинами:

­¯

 

Такая пара электронов называется спаренной. Суммарное спиновое число электронов данного подуровня должно быть максимальным (сначала каждая ячейка заполняется по одному электрону с параллель­ными спинами, а затем производится парное размещение электро­нов со спинами, противоположными к уже имеющимся в ячейке электронам). Например, для валентных электронов атома углерода:

       
   


С ­¯ ­ ­

2s 2p

Для атома марганца:

Mn ­ ­ ­ ­ ­ ­¯

3d 4s

Если на внешнем энергетическом уровне имеются вакантные, не за­нятые электронами квантовые ячейки, то при возбуждении атома происходят переходы электронов из занятых ячеек в свободные. При этом изменяется значение спиновой валентности (числа неспа­ренных электронов). Например, для стационарного, отвечающего минимальной энергии атома, состояние атома хлора распределение по квантовым ячейкам таково:

 

Cl 1s22s22p63s23p5 ­¯ ­¯ ­¯ ­

S 3p 3d

3d ячейки при этом остаются свободными. Спиновая валентность хлора в основном (стационарном) состоянии равна 1. При возбуж­дении атома в результате приобретения им дополнительной энергии электроны из 3p- состояния переходят в одну из пустых 3d- ячеек:

           
     


Сl *1s22s22p63s23p43d1 ­¯ ­¯ ­ ­ ­

S 3p 3d

Спиновая валентность становится равной 3. При получении новой порции энергии атомом возбуждается следующая электронная пара:

электрон из второй 3p -ячейки переходит в свободную ячейку 3d- подуровня.При этом спиновая валентность станет равной 5. Нако­нец, третье возбуждённое состояние атома хлора характеризуется переходом из электронов 3s- состояния в ячейку 3d. Хлор приобре­тает максимальную валентность 7:

           
     


Сl ** ­¯ ­ ­ ­ ­ ­

S 3p 3d

           
     


Сl *** ­ ­ ­ ­ ­ ­ ­

S 3p 3d

Характер застройки энергетических подуровней определяет принад­лежность элемента к тому или иному электронному семейству:

s -элементы - застройка внешнего s -подуровня, например:

Калий К 1s22s22p63s23p64s1

р -элементы - застройка внешнего р -подуровня, например:

Фосфор Р 1s22s22p63s23p3

d -элементы - застройка предвнешнего d -подуровня, например:

Ванадий V 1s22s22p63s23p63d34s2

f -элементы - застройка третьего снаружи f -подуровня, например:

Церий Се 1s22s22p63s23p63d104s24p64d104f25s25p65d06s2

Естественной классификацией элементов по электронным конфи­гурациям их атомов является периодическая система элементов Менделеева. Причина периодичности свойств элементов заключается в периодической повторяемости сходных электронных конфигура­ций.

В периодах (горизонтальных строках таблицы) свойства элементов изменяются в связи с закономерным изменением электронных структур их атомов.

В группах (вертикальных строках таблицы) свойства элементов сходны благодаря аналогии в электронном строении внешнего ва­лентного уровня.

Номер периода определяет номер внешнего энергетического уровня в электронных формулах элементов. Количество элементов в каждом периоде соответствует минимальной ёмкости застраиваю­щихся энергетических подуровней.

Номер группы отвечает числу валентных электронов в атоме элемента. Кроме первого, каждый период начинается с двух s -эле­ментов и заканчивается шестью р -элементами. В больших периодах между этими семействами располагаются десять d- элементов (4....6 периоды). В 6 периоде к ним добавляется четырнадцать f- элемен­тов, 7 период не завершён.

Указанные закономерности позволяют составить электронную формулу элемента. Например, элемент тантал находится в 6 пе­риоде, V группе, побочной подгруппе. Это говорит о том, что в атоме этого элемента шесть энергетических уровней, пять валент­ных электронов. Перед танталом в 6 периоде стоят два s -элемента и два d -элемента. Сам тантал - третий по счёту d -элемент. Следо­вательно, его валентные электроны имеют конфигурацию 5d36s2. Предыдущие энергетические уровни застроены полностью. Полная электронная формула этого элемента имеет вид:

Та 1s22s22p63s23p63d104s24p64d104f145s25p65d36s2.

В периодической зависимости от зарядов ядер атомов находится валентность (степень окисления), атомные и ионные радиусы, энер­гия ионизации, энергия сродства к электрону, электроотрицатель­ность и другие свойства.

В простейшей трактовке валентности как степени окисления ато­мов её отождествляют с числом электронов, отдаваемых или при­обретаемых атомами в процессе взаимодействия.

Высшую степень окисления атом приобретает, отдав все свои ва­лентные электроны, поэтому её величина соответствует номеру группы, в которой находится данный элемент. Так, высшая степень окисления азота - +5 (V группа элементов), серы - +6 (VI группа элементов).

Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении электронов, необхо­димых ему для приобретения устойчивой восьмиэлектронной обо­лочки (октета электронов). Отсюда низшую степень окисления можно рассчитать по разности между 8 и номером группы. Напри­мер, для азота низшая степень окисления равна -3, для серы -2. Следует учесть, что металлы не проявляют отрицательных степеней окисления, для них минимальным значением этой величины явля­ется 0.

Значение высшей и низшей степеней окисления атомов элементов позволяет составлять формулы их соединений: высших оксидов, гидроксидов, солей, водородных соединений. При составлении фор­мул следует учитывать требование электронейтральности. Степени окисления кислорода, как правило, -2, водорода - +1.

Общая формула оксидов - соединений элемента с кислородом - Э+mxО-2y, водородных соединений - Э-mН+1m, гидроксидов - ос­нований Э+m(ОН)m. Простейшие формулы кислородсодержащих кислот выражаются общими формулами: НЭ+7О4, Н2Э+6О4,

Н3Э+5О4 НЭ+5О3, Н4Э+4О4 Н2Э+4О3

орто мета орто мета

Энергия ионизации, энергия сродства к электрону, электроотрица­тельность являются мерами проявления элементами металлических и неметаллических свойств. Металлические (восстановительные) свой­ства определяются способностью атомов элементов к отдаче элек­тронов, неметаллические (окислительные) - тенденцией к при­соеди­нению электронов.

Металлические свойства наиболее характерны для элементов, в атомах которых на внешнем энергетическом уровне находится не­большое количество электронов: от одного до трёх. Неметалличе­ские свойства, в первую очередь, проявляют элементы, в атомах которых на внешнем уровне от четырёх до семи электронов.

В периоде периодической системы металлические свойства эле­ментов убывают с ростом порядкового номера; неметаллические свойства, напротив, возрастают в том же направлении. Это связано с закономерным ростом числа валентных электронов.

В группе металлические свойства возрастают с ростом порядко­вого номера, а неметаллические убывают, что связано с увеличе­нием радиуса атома с ростом порядкового номера элемента, удалён­ностью внешних электронов от ядра и ослаблением сил притяжения между электронами и ядром.

Большинство элементов периодической системы проявляют как металлические, так и неметаллические свойства. Вклад тех или дру­гих определяется спецификой электронной структуры атома. Коли­чественно этот вклад можно охарактеризовать с помощью величины электроотрицательности атома, представляющей собой полусумму энергии ионизации и энергии сродства к электрону. Электроотрица­тельность возрастает в периоде с ростом порядкового номера и убывает в группе с ростом порядкового номера.

Свойства соединений элементов можно рассматривать с двух то­чек зрения: как кислотно-основные и окислительно-восстановитель­ные. Типичные металлы образуют оксиды и гидроксиды основного характера, типичные неметаллы - кислотные оксиды и кислоты. Кислотно-основной характер остальных элементов, в первую оче­редь, это относится к d -элементам, зависит от степени окисления их атомов: с ростом степени окисления основной характер соедине­ний сменяется амфотерным и далее переходит в кислотный. На­пример, хром в степени окисления +2 образует оксид CrO и гид­роксид Cr(OH)2, проявляющие основные свойства. Соединения хрома +3 - Cr2O3, Cr(OH)3 -амфотерны, а оксид и гидроксид хрома в степени окисления +6 носят кислотный характер (CrO3, Н2СrO4 и H2Cr2O7).

Задачи 1 - 20

1. Для атомов элементов, порядковые номера которых указаны в табл.1 укажите состав ядер (число протонов и нейтронов), составьте электронные формулы атомов. Укажите валентные электроны, рас­пределите их по квантовым ячейкам в стационарном и возбуждён­ном состояниях, определите значения спиновой валентности. К ка­кому электронному семейству принадлежит каждый элемент?

2. Исходя из положения элементов в периодической системе элементов Менделеева, выбранных в соответствии с шифром (см. табл.1), охарактеризуйте их свойства. Является ли каждый из них металлом или неметаллом, окислителем или восстановителем? Ка­ковы высшая и низшая степени окисления их атомов? Составьте формулы оксидов и гидроксидов, отвечающих их высшей степени окисления? Какими кислотно-основными свойствами обладают эти соединения? Приведите уравнения соответствующих реакций. Обра­зуют ли данные элементы водородные соединения? Сравните свой­ства соединений данного элемента со свойствами аналогичных со­единений элементов той же подгруппы периодической системы.

 

Т а б л и ц а 1

Номер Порядковые задачи номера элементов Номер Порядковые задачи номера элементов
1 33, 38 2 17, 56 3 20, 35 4 15, 52 5 19, 53 6 20, 51 7 22, 32 8 34, 42 9 21, 31 10 25, 35 11 39, 49 12 27, 37 13 16, 55 14 24, 34 15 23, 50 16 14, 48 17 15, 47 18 25, 53 19 40, 50 20 41, 51

Тема 2. Химическая связь

Литература: [1] c.35-56; [2] с.115-156; [3] с.41-93.

 

Теоретические основы

Химическая связь возникает при взаимодействии атомов и приво­дит к образованию многоатомной системы - молекулы, молекуляр­ного иона, кристалла. Причиной (движущей силой) возникновения химической связи является уменьшение потенциальной энергии при пе­реходе от изолированных атомов к устойчивой многоатомной системе.

Мерой прочности химической связи является её энергия, вели­чина которой определяется количеством энергии, выделившейся при образовании вещества из отдельных атомов. Например, энергия связи Н¾Н в молекуле водорода равна 435 кДж/моль. Это значит, что при образовании 1 моля газообразного водорода по уравнению

Н + Н = Н2 + 435 кДж/моль

выделяется 435 кДж теплоты. Такое же количество энергии должно быть затрачено на распад 1 моля Н2 до атомарного состояния (энергия диссоциации).

Химическая связь характеризуется также длиной, под которой понимают расстояние между ядрами химически связанных атомов. Так, длина химической связи Н¾О в молекуле воды Н2О равна 0.096 нм (1 нм = 1· 10-9 м).

Химическая связь возникает благодаря взаимодействию электромагнитных полей, создаваемых электронами и ядрами атомов, уча­ствующих в образовании молекулы или кристалла.

Современная теория химической связи базируется на квантово-механической модели строения атома. В ней можно выделить два метода: метод валентных связей (ВС) и метод молекулярных орби­талей (МО).

В основе метода МО лежат представления об орбитальном строении молекул. Задачей этого метода является характеристика энергетических параметров электронов в молекуле, выходными дан­ными в таком случае является энергетическая диаграмма соответст­вующих уровней.

Охарактеризовать молекулу методам ВС - это означает предста­вить графически распределение электронной плотности в молекуле. Ниже кратко излагаются основные представления этого метода в применении к ковалентной химической связи.

Ковалентная химическая связь образуется парой электронов с противоположно направленными спинами, для чего каждый атом предоставляет один неспаренный электрон, называемый валентным. Эта пара электронов принадлежит одновременно обоим взаимодей­ствующим атомам, что означает повышение электронной плотности в пространстве между ядрами (центрами) химически связанных ато­мов. Поэтому ковалентная химическая связь является двухэлектрон­ной и двухцентровой. Процесс «спаривания» электронов при обра­зовании, например, молекулы водорода может быть изображён сле­дующей схемой:

Н ­ ­

¾® Н2

       
 
   
 


Н ¯ ¯

По Льюису указанный механизм наглядно представляют в виде электронной схемы молекулы, где электрон изображают точками. Для молекулы водорода такая схема имеет вид:

Н· + ·Н ¾® Н: Н

В графической формуле молекул пара точек заменяется валент­ным штрихом, соответствующим одной химической связи: Н¾Н.

Атом хлора имеет на наружном уровне 7 электронов:

Cl 3s23p5, из которых один является неспаренным:

 

Cl ­¯ ­¯ ­¯ ­

S 3p 3d

Отсюда получаем следующую электронную схему молекулы хлора Сl2 :: +: ¾®: : : или Сl¾Cl

Ковалентную связь, образованную посредством одной общей электронной пары, называют ординарной и изображают в структур­ных формулах одним валентным штрихом. Если же связь образуется за счёт двух или трёх общих электронных пар, она называется двойной или тройной, соответственно.

Кратные ковалентные связи изображают в структурных формулах двумя или тремя валентными штрихами. Так, атом азота имеет три неспаренных электрона:

       
   


N ­¯ ­ ­ ­

S 2p

поэтому молекула N2 образуется в результате обобщения трёх элек­тронных пар (возникает тройная ковалентная связь):

+ ¾® или N ≡ N

В молекуле оксида углерода (IV) двойные ковалентные связи:

: : + ∙ ∙+: : ¾® :: ::

или О=С=О

Молекула СО2 образована атомом углерода в возбуждённом со­стоянии: С* 2s12p3.

Таким образом, валентность химического элемента (как способ­ность его атомов образовывать определённое число химических свя­зей) зависит от количества неспаренных электронов его атома в основном или возбуждённом состояниях.

Одним из свойств ковалентной химической связи является её полярность. Если электроотрицательность (способность к смещению электронной плотности) атомов, образующих молекулу, одинакова или очень близка, то общая электронная пара располагается строго симметрично по отношению к обоим ядрам. Такая ковалентная связь называется неполярной. Неполярная ковалентная связь осуще­ствляется, например, в молекулах Н2, F2, O2, N2, в любых других гомоядерных молекулах, образованных атомами одного и того же элемента.

Если же электроотрицательность атомов различна, электронная пара смещается в сторону более электроотрицательного атома. При этом возникают частичные (дробные) заряды: отрицательный на бо­лее электроотрицательном атоме и положительный на атоме с меньшей электроотрицательностью. В молекуле образуются два по­люса. Подобные ковалентные связи называют полярными. Напри­мер, в молекулах НCl, H2O, NH3 и т.д.

В случае очень большой разницы в электроотрицательностях (численно более 2), поляризация связи приобретает необратимый ха­рактер. Это происходит тогда, когда соединение образуют, с одной стороны, атом, легко отдающий свои валентные электроны, имею­щий низкий потенциал ионизации (прежде всего, это щелочные и щёлочно-земельные металлы), а с другой стороны, атом, проявляю­щий тенденцию к присоединению электронов, обладающий высоким сродством к электрону (галогены, кислород, азот и, отчасти, сера и фосфор). При этом электрон полностью переходит от первого атома ко второму. Атомы превращаются в заряженные частицы - ионы. Атом, отдавший один электрон, приобретает заряд +1 и на­зывается катионом. Атом, приобретший дополнительный электрон, получает заряд -1 и называется анионом. Электростатическое при­тяжение, возникшее между разноименно заряженными ионами, на­зывают ионной химической связью. Примерами ионных соединений являются галогениды и оксиды щелочных металлов: LiCl, K2O, CsI и т.п.

Повышение электронной плотности в результате образования общей электронной пары (ковалентная химическая связь) можно представить с помощью области перекрывания атомных орбиталей, занятых неспаренными валентными электронами, образующих дан­ную молекулу. Перекрывание орбиталей происходит в том направ­лении, которое обеспечивает образование максимальной области пе­рекрывания. По этой причине, а также в связи с тем, что орби­тали имеют определённую геометрическую форму, ковалентная связь обладает свойством направленности.

Перекрывание орбиталей может осуществляться разными спосо­бами. Например, при образовании s-связи перекрывание происходит

вдоль линии, соединяющей ядра (рис. 1):

           
 
   
     
 


       
   


s s s p p p

(молекула Н2) (молекула НCl) (молекула Сl2)

Рис. 1. Перекрывание орбиталей s-способом.

 

При боковом перекрывании орбиталей образуется p-связь. В этом случае возникают две общие области: над и под плоскостью, в ко­торой лежат ядра. На схемах p-связь принято изображать условно (рис. 2, а и б).

 

а) б)

       
   
 
 

 


Рис.2. Перекрывание орбиталей p-способом.

s- и p-Способами перекрывания орбиталей харак­теризу-ется не ионная, а ковалентная связь. Причём, s-способ при­водит к образованию более прочной ковалентной связи, поскольку в этом случае реализуется большая степень перекрывания.

Для того чтобы дать характеристику определённой молекулы ме­тодом ВС, требуется:

- по величинам электроотрицательности определить тип химиче­ской связи (ковалентная неполярная, ковалентная полярная или ионная) в соединении;

- написать электронные формулы атомов, принимающих участие в образовании молекулы;

- выбрать валентные электроны; распределить их по квантовым ячейкам; выбрать неспаренные электроны;

- в случае, если количество неспаренных электронов меньше численного значения валентности многовалентного атома, перевести последний в возбуждённое состояние;

- установить, на каких орбиталях находятся эти неспаренные электроны;

- если связь ковалентная, нарисовать перекрывание этих орбита­лей в молекуле;

- если связь ионная, указать, какие атомы и сколько электро­нов отдают и принимают, указать величину зарядов ионов в соеди­нении.

Пример: молекула сероводорода (H2S).

Электроотрицательность: серы 2.58, водорода 2.10. Связь между атомами Н и S - ковалентная полярная. Обобществленные элек­тронные пары смещены в молекуле сероводорода от атомов водо­рода (на которых появляется частичный положительный заряд) к атому серы (возникает частичный отрицательный заряд). Элек­тронная формула водорода: Н 1s1; серы: S 1s22s22p63s23p4. Ва­лентные электроны водорода: 1s1; серы: 3s23p4. Распределение электронов по квантовым ячейкам:

Н ­ S ­¯ ­¯ ­ ­

1s 3s 3p

Неспаренные электроны серы занимают две 3р-орбитали. По­скольку спиновая валентность атома серы соответствует ва­лентности, обусловливающей формульный состав молекулы серово­дорода, атом серы образует две химические связи в основном со­стоянии.

По причине взаимной перпендикулярности двух р-орбиталей од­ного подуровня, схема перекрывания 3р-орбиталей серы и s-орбиталей двух атомов водорода имеет вид, представленный на рис. 3,а. Соединив ядра атомов водорода и серы прямыми линиями, полу­чаем геометрическую фигуру, дающую представление о форме мо­лекулы: молекула сероводорода имеет угловое строение (рис. 3,б).

а) S б) S

 
 

 


H H

i i

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...