Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формулы произведения функций




Формулы половинного аргумента

Формулы двойного аргумента

Формула дополнительного угла

где

Определение тригонометрических функций

 

Универсальная подстановка

Свойства тригонометрических функций

Функция Свойства
Область определения Множество значений Четность-нечетность Период
cosx cos(-x)= cosx 
sinx sin(-x)= -sinx 
tgx tg(-x)= -tgx
ctgx ctg(-x)= -ctgx

Тригонометрические уравнения

Косинус:

Уравнения с синусом

Частные формулы:

Общая формула:

Уравнения с тангенсом и котангенсом

Формулы обратных триг функций

Если 0 < x £ 1, то arccos(-x) = p - arccosx arcsin(-x) = - arcsinx Если x > 0, то arctg(-x) = - arctgx arcctg(-x) = p - arcctgx

Обратные триг функции

Функция Свойства  
Область определения Множество значений  
arccosx [ 0; p ]  
arcsinx [-p/2; p/2]  
       
arctgx (-p/2; p/2)  
arcctgx (0; p)  
 

Геометрия

Теорема косинусов, синусов

Теорема косинусов:

Теорема синусов:

Площадь треугольника

           
     
 


Средняя линия

Средняя линия – отрезок, с соединяющий середины двух с сторон треугольника.

Средняя линия параллельна т третьей стороне и равна е её половине:

Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного

Равносторонний треугольник

треугольник, у которого все стороны равны.

v Все углы равны 600.

v Каждая из высот является одновременно биссектрисой и медианой.

v Центры описанной и вписанной окружностей совпадают.

v Радиусы окружностей:

Площадь

Равнобедренный треугольник

треугольник, у которого две стороны равны.

1.Углы, при основании треугольника, равны

2.Высота, проведенная из вершины, является б биссектрисой и медиан

 

 

bc
Прямоугольный треугольник

 
 

 


v Теорема Пифагора: Площадь:

v Тригонометрические соотношения:

v Центр описанной окружности лежит на середине гипотенузы.

v Радиусы окружностей:

v Высота, опущенная на гипотенузу:

v Катеты:

Основные соотношения в треугольнике

Ø Неравенство треугольника:

a + b > c; a + c > b; b + c > a

Ø Сумма углов: 

Ø Против большей стороны лежит больший угол, и обратно, против большего угла лежит большая сторона.

Ø Против равных сторон лежат равные углы, и обратно, против равных углов лежат равные стороны.

Биссектриса

 

 

Биссектриса – отрезок, выходящий из вершины треугольника и делящий угол пополам.

· Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам: ab: ac = b: c

· Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам.

·

 

Конус

H

R
Sбок.= pR(R+L)

 
 


Усеченный конус

 
 


 

 
 


Вписанная окружность

 

 

  • Центр окружности, вписанной в треугольник, лежит на пересечении биссектрис треугольника.
  • Если окружность вписана в произвольный четырехугольник, тогда попарные суммы противолежащих сторон равны между собой:

a + b = c + d

Описанная окружность

Касательная, секущая

·

· Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.

· Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы.

· Около трапеции можно описать окружность только тогда, когда трапеция равнобочная.

· Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой:

Длина окружности, площадь

 
 

 

 


 

 

 
 


Хорда

 

Хорда – отрезок, соединяющий две точки окружности.

· Диаметр, делящий хорду пополам, перпендикулярен хорде.

· В окружности равные хорды равноудалены от центра окружности.

· Отрезки пересекающихся хорд связаны равенством:

 

Шар

 
 


 
 


Шаровой сектор

Шаровой сегмент

Центральный, вписанный угол

Сектор

 
 


Касательная, секущая

 
 


Касательная – прямая, имеющая с окружностью одну общую точку.

Секущая – прямая, имеющая с окружностью две общие точки.

X

X

X

Призма

Прямая

Призма

Цилиндр


Медиана

 
 


Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

· Медианы треугольника точкой их пересечения делятся в отношении 2:1 (считая от вершины треугольника).

· Медиана делит треугольник на два треугольника с равными площадями.

Правильная пирамида

Правильная пирамида

пирамида, у которой в основании и правильный многоугольник, а вершина с м проецируется в центр основания.

М Все боковые рёбра равны между м м собой и все боковые грани – равные м равнобедренные треугольники.

Усеченная пирамида

Скалярное произведение

 
 


Сумма, разность векторов

Углы на плоскости

 
 


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...