Формулы произведения функций
⇐ ПредыдущаяСтр 2 из 2 Формулы половинного аргумента
Формулы двойного аргумента Формула дополнительного угла где
Определение тригонометрических функций
Универсальная подстановка
Свойства тригонометрических функций
Тригонометрические уравнения Косинус:
Уравнения с синусом Частные формулы:
Общая формула:
Уравнения с тангенсом и котангенсом
Формулы обратных триг функций
Обратные триг функции
Геометрия Теорема косинусов, синусов Теорема косинусов: Теорема синусов: Площадь треугольника
Средняя линия Средняя линия – отрезок, с соединяющий середины двух с сторон треугольника. Средняя линия параллельна т третьей стороне и равна е её половине: Средняя линия отсекает подобный треугольник, площадь которого равна одной четверти от исходного Равносторонний треугольник треугольник, у которого все стороны равны.
v Все углы равны 600. v Каждая из высот является одновременно биссектрисой и медианой. v Центры описанной и вписанной окружностей совпадают. v Радиусы окружностей: Площадь Равнобедренный треугольник треугольник, у которого две стороны равны. 1.Углы, при основании треугольника, равны 2.Высота, проведенная из вершины, является б биссектрисой и медиан
v Теорема Пифагора: Площадь: v Тригонометрические соотношения: v Центр описанной окружности лежит на середине гипотенузы. v Радиусы окружностей: v Высота, опущенная на гипотенузу: v Катеты: Основные соотношения в треугольнике Ø Неравенство треугольника: a + b > c; a + c > b; b + c > a Ø Сумма углов: Ø Против большей стороны лежит больший угол, и обратно, против большего угла лежит большая сторона. Ø Против равных сторон лежат равные углы, и обратно, против равных углов лежат равные стороны. Биссектриса
Биссектриса – отрезок, выходящий из вершины треугольника и делящий угол пополам. · Биссектриса делит противолежащую сторону на части, пропорциональные прилежащим сторонам: ab: ac = b: c · Биссектриса делит площадь треугольника, пропорционально прилежащим сторонам. ·
Конус
Усеченный конус
Вписанная окружность
a + b = c + d Описанная окружность Касательная, секущая · · Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к его трем сторонам.
· Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы. · Около трапеции можно описать окружность только тогда, когда трапеция равнобочная. · Если окружность описана около произвольного четырехугольника, тогда попарные суммы противолежащих углов равны между собой: Длина окружности, площадь
Хорда
Хорда – отрезок, соединяющий две точки окружности. · Диаметр, делящий хорду пополам, перпендикулярен хорде. · В окружности равные хорды равноудалены от центра окружности. · Отрезки пересекающихся хорд связаны равенством:
Шар
Шаровой сектор
Шаровой сегмент Центральный, вписанный угол Сектор Касательная, секущая Касательная – прямая, имеющая с окружностью одну общую точку. Секущая – прямая, имеющая с окружностью две общие точки. X X X Призма
Прямая Призма Цилиндр
Медиана Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны. · Медианы треугольника точкой их пересечения делятся в отношении 2:1 (считая от вершины треугольника). · Медиана делит треугольник на два треугольника с равными площадями. Правильная пирамида Правильная пирамида пирамида, у которой в основании и правильный многоугольник, а вершина с м проецируется в центр основания. М Все боковые рёбра равны между м м собой и все боковые грани – равные м равнобедренные треугольники. Усеченная пирамида Скалярное произведение Сумма, разность векторов
Углы на плоскости
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|