Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

7.Молекулярный уровень организации наследственной информации. Нуклеиновые кислоты, их значение.




7. Молекулярный уровень организации наследственной информации. Нуклеиновые кислоты, их значение.

Генетическая информация в клетке связана с нуклеиновыми кислотами. Их два типа: дезоксирибонуклеиновая кислота(ДНК) и рибонуклеиновая кислота(РНК). Мономерными структурными единицами нуклеиновых кислот являются нуклеотиды. Нуклеотид состоит из молекулы фосфорной кислоты, моносахарида(дезоксирибозы— ДНК или рибозы — РНК) и одного из 4-х азотистых оснований: аденина(А), гуанина(Г), цитозина(Ц) и тимина(Т) — ДНК или урацила(У) — РНК.

Модель строения молекулы ДНК предложили в 1953 году Ж. Уотсон и Ф. Крик. ДНК представляет собой двойную правозакрученную спираль, построенную из двух полинуклеотидных цепей.

Правило Чаргаффа:

1. А=Т;

2. Г=Ц;

3. Сумма пуриновых равна сумме пиримидиновых оснований(А+Г=Т+Ц).

По современным представлениям ДНК имеет две функции.

  1. Аутосинтетическая — способность к самоудвоению в синтетическом периоде интерфазы.
  2. Гетеросинтетическая — передача информации о структуре белка на молекулу и-РНК, которая играет главную роль в процессе биосинтеза белка в клетке.

В ходе репликации после удвоения ДНК в ней обнаруживаются ошибки, возникающие под действием различных факторов физической и химической природы - при этом возникает репарация - самовосстановление первичной структуры ДНК.

РНК – состоит из одной полинуклипептидной цепи. В зависимости от функции или локализации в клетке различают три вида РНК: информационную(и-РНК), транспортную(т-РНК) и рибосомную(р-РНК).

Нуклеиновые кислоты ответственны за передачу наследственной информации, с ними связан направленный синтез белка в организме, процессы старения.

8. Строение гена. Гены структурные, регуляторные, синтез т-РНК и р-РНК.

Ген — структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК. Гены(точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.

Синтез белка в клетке регулируется с помощью оперонной системы, состоящей из структурных и регуляторных генов. Оперон принимает участие в транскрипции — синтезе молекулы и-РНК на матрице ДНК в ядре. При этом структурные гены содержат смысловые участки, несущие информацию о структуре белка(экзоны) и бессмысловые участки(интроны). Интроны с помощью фермента рестриктазы вырезаются, а оставшиеся экзоны соединяются лигазой в цепочку. Этот процесс получил название сплайсинга. Затем в цитоплазме в рибосомах на и-РНК происходит процесс трансляции (синтез полипептидной цепочки — первичной структуры белковой молекулы). Свои свойства белковая молекула приобретает в комплексе Гольджи.

Гены функционально неоднородны. Это обнаружили в 1961 го­ду французские ученые Ф. Жакоб и Ж. Моно. Они доказали, что су­ществует две группы генов: структурные, управляющне синтезом специфических белков и регуляторные, контролирующие деятельность структурных генов. Синтез белка в клетке регулируется с помощью оперонной системы, состоящей из регуляторных(промотор и оператор) и структурных генов.

9. Генетический код, его свойства

Последовательность аминокислот в белке определяется последова­тельностью нуклеотидов в молекуле ДНК, его генетическим кодом. Наследственная информация на ДНК записана с помощью генетического кода.

Код имеет следую­щие основные свойства:

 1. Триплетность — одну аминокислоту кодируют три нуклеотида.    

2. Вырожденность (избыточность) — одну аминокислоту ко­дируют от двух до четырех триплетов. Всего имеется 64 триплета: 61 триплет несет информацию об аминокислотах, а 3 стоп-кодона обозначают окончание синтеза полипептидной цепи.

3. Неперекрываемость — нуклеотид одного триплета не может входить в состав соседнего триплета.  

4. Универсальность — код един для всех живых организмов(синтез белка).

10. Основные этапы биосинтеза белка в клетке.

1. Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

2. Процессинг (только у эукариот) – созревание иРНК: удаление из нее участков, не кодирующих белок, а также присоединение управляющих участков.

3. Экспорт иРНК из ядра в цитоплазму (только у эукариот). Происходит через ядерные поры; всего экспортируется примерно 5% от общего количества иРНК в ядре.

4. Синтез аминоацил-тРНК. В цитоплазме имеется 61 фермент аминоацил-тРНК-синтетаза. Он комплементарно узнает аминокислоту и тРНК, которая должна ее переносить, и соединяет их между собой, при этом затрачивается 1 АТФ.

5. Трансляция(синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

6. Созревание белка. Вырезание из белка ненужных фрагментов, присоединение небелковых компонентов(например, гема), соединение нескольких полипептидов в четвертичную структуру.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...