Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Требования к рабочим жидкостям




Основные элементы гидропривода

Обязательными элементами гидропривода являются насос и гидродвигатель. Насос является источником гидравлической энергии, а гидродвигатель — её потребителем, то есть преобразует гидравлическую энергию в механическую. Управление движением выходных звеньев гидродвигателей осуществляется либо с помощью регулирующей аппаратуры — дросселей, гидрораспределителей и др., либо путём изменения параметров самого гидродвигателя и/или насоса.

Также обязательными составными частями гидропривода являются гидролинии, по которым жидкость перемещается в гидросистеме.

Критически важной для гидропривода (в первую очередь объёмного) является очистка рабочей жидкости от содержащихся в ней (и постоянно образующихся в процессе работы) абразивных частиц. Поэтому системы гидропривода обязательно содержат фильтрующие устройства (например, масляные фильтры), хотя принципиально гидропривод некоторое время может работать и без них.

Поскольку рабочие параметры гидропривода существенно зависят от температуры рабочей жидкости, то в гидросистемах в некоторых случаях, но не всегда, устанавливают системы регулирования температуры (подогревающие и/или охладительные устройства).

 

Рабочая жидкость

Рабочая жидкость (в гидроприводе) — жидкость, используемая как носитель энергии. В качестве рабочих жидкостей применяются минеральные, синтетические и полусинтетические масла, жидкости на силиконовой основе, водо-масляные эмульсии, масляно-водяные эмульсии.

• В гидроприводе рабочая жидкость является энергоносителем, благодаря которому устанавливается связь между насосом и гидродвигателем. Рабочая жидкость обеспечивает смазывание трущихся поверхностей деталей, отводит тепло, удаляет продукты износа, защищает детали от коррозии.

• Условия эксплуатации:

• температура -60 …+90 0C;

• скорость жидкости при дросселировании до 50 м/ч;

• давление 32МПа и более.

 

• В качестве рабочих жидкостей в гидравлическом приводе применяют

• Минеральные масла

• Водомасляные эмульсии

• Смеси

• Синтетические жидкости.

Выбор типа и марки рабочей жидкости определяется назначением и условиями эксплуатации гидроприводов машин

 

 

Требования к рабочим жидкостям

Рабочие жидкости для гидросистем должны удовлетворять следующим требованиям:

вязкостью в требуемом диапазоне значений;

высоким индексом вязкости (минимальной зависимостью вязкости от температуры);

хорошими смазывающими свойствами;

химической инертностью к материалам, из которых сделаны элементы гидропривода;

высоким объёмным модулем упругости;

высокой устойчивостью к химической и механической деструкции;

высоким коэффициентом теплопроводности и удельной теплоёмкости и малым коэффициентом теплового расширения;

высокой температурой вспышки;

нетоксичностью.

 

45.Минеральные масла получают в результате переработки высококачественных сортов нефти с введением в них присадок, улучшающих их физические свойства. Присадки добавляют в количестве 0,05…10%. Присадки могут быть многофункциональными, т.е. влиять на несколько физических свойств сразу. Различают присадки антиокислительные, вязкостные, противоизносные, снижающие температуру застывания жидкости, антипенные и т.д.

Удельным весом масла называется отношение веса данного объема масла при температуре +20°С к весу такого же объема воды при температуре +4° С.Удельный вес масла с изменением давления и температуры изменяется незначительно. Практически для гидросистем он может быть принят γ = 0,9 Г/см3.

Вязкость масла является его важнейшей характеристикой. Неправильно выбранное по вязкости масло снижает коэффициент полезного действия гидросистемы: при низкой вязкости повышаются утечки, при высокой - увеличиваются потери на трение.Вязкость масла обычно измеряется в условных единицах- градусах Энглера. Определяют вязкость при помощи специального прибора, представляющего собой колбу с отверстием.

Условные градусы определяются как частное от деления времени истечения 200 см3 масла при температуре 50° С (или 100° С) через отверстие диаметром 2,8 мм на время истечения через это же отверстие 200 см3дистиллированной воды при 20° С.

Вязкость обозначается °E50 (или °Е100) и называется числом вязкости по Энглеру при 50°С (или при 100°С). Так как вязкость масла с изменением температуры существенно изменяется, то значение вязкости для одного и того же масла при 50 и 100° С будет различно. В таблицах свойств масел приводится вязкость при 50° С, так как рабочая температура масла в гидросистемах не должна превышать этой величины. Вязкость масла зависит от давления. При давлениях выше 50 кгс/см2 вязкость заметно увеличивается.

Температурой вспышки называется температура, при которой пары масла при поднесении открытого огня воспламеняются. Температурой застывания называется температура, при которой масло застывает, т. е. не стекает под действием собственной силы тяжести.

 

46. Водомасляные эмульсии представляют собой смеси воды и минерального масла в соотношениях 100:1, 50:1 и т.д. Минеральные масла в эмульсиях служат для уменьшения коррозионного воздействия рабочей жидкости и увеличения смазывающей способности. Эмульсии применяют в гидросистемах машин, работающих в пожароопасных условиях и в машинах, где требуется большое количество рабочей жидкости (например, в гидравлических прессах). Применение ограничено отрицательными и высокими (до 60 С) температурами.

Водомасляные эмульсии (дисперсионные системы масла и воды) в зависимости от способа диспергирования подразделяются на эмульсии, стабилизированные эмульгатором, и без него. По степени устойчивости против расслоения фаз эмульсии могут быть стабильными, полустабильными и нестабильными. Описание свойств эмульсий и их специфических особенностей применения в прокатном производстве достаточно широко содержится в исследованиях советских ученых. При концентрации дисперсной фазы до 0,1—0,15 % эмульсии могут быть стабильны и без эмульгаторов, однако такой способностью обладают далеко не все масла. Для обеспечения равномерного распределения частиц дисперсной фазы необходимы либо эмульгаторы, обеспечивающие получение стабильной эмульсии, либо специальные условия приготовления и подачи. Минеральные масла не смешиваются с водой, хотя при механическом перемешивании можно получить эмульсию. При прекращении перемешивания эта эмульсия быстро разлагается вследствие разной плотности масла и воды. Образование и стабильность водо-масляных смесей обеспечиваются тщательным перемешиванием компонентов в мешалках при температуре смеси 60—80°С и достаточной скоростью потока в системах подачи (Rе > 1000).

47. Синтетические жидкости

Рабочие жидкости на нефтяной основе не могут обеспечить весь диапазон требований, которые предъявляет к гидроприводам практика. Для гидроприводов, работающих в условиях, отличающихся от нормальных (tраб > 1000° С, повышенные требования к пожаробезопасности, чрезмерно низкие температуры окружающей среды и т.п.), или от которых требуется повышенная стабильность характеристик, применяются синтетические рабочие жидкости. Синтетические жидкости на основе силиконов, хлор- и фторуглеродистых соединениях, полифеноловых эфиров и т.д. негорючи, стойки к воздействию химических элементов, обладают стабильностью вязкостных характеристик в широком диапазоне температур. Обладая повышенными отдельными свойствами, синтетические рабочие жидкости имеют некоторые недостатки, препятствующие их широкому применению. Это в первую очередь высокая стоимость и ограниченность сырьевых ресурсов, используемых для изготовления синтетических жидкостей. Но последнее время, несмотря на высокую стоимость синтетических жидкостей, они находят все большее применение в гидроприводах машин общего назначения. Кроме того, ряд таких жидкостей плохо совместимы с основными материалами гидроприводов, токсичны и имеют худшие, по сравнению с минеральными маслами, показатели по отдельным свойствам.

48. Выбор рабочих жидкостей для гидросистемы машины определяется:

- диапазоном рабочих температур;

- давлением в гидросистеме;

- скоростями движения исполнительных механизмов;

- конструкционными материалами и материалами уплотнений;

- особенностями эксплуатации машины (на открытом воздухе или в помещении, условиями хранения машины, возможностями засорения и т.д.).

Диапазон рекомендуемых рабочих температур находят по вязкостным характеристикам рабочих жидкостей. Верхний температурный предел для выбранной рабочей жидкости определяется допустимым увеличением утечек и снижением объемного КПД, а также прочностью пленки рабочей жидкости.

Нижний температурный предел определяется работоспособностью насоса, характеризующейся полным заполнением его рабочих камер или пределом прокачиваемости жидкости насосом. При безгаражном хранении машин в зимнее время вязкость жидкостей становится настолько высокой, что в периоды пуска и разогрева гидросистемы насос некоторое время не прокачивает рабочую жидкость. В результате возникает "сухое" трение подвижных частей насоса, кавитация, интенсивный износ и выход насоса из строя. Таким образом, при применении рабочих жидкостей в условиях отрицательных температур пуску гидропривода в работу должен непременно предшествовать подогрев рабочей жидкости.

Рабочее давление в гидросистеме и скорость движения исполнительного механизма также являются важными показателями, определяющими выбор рабочей жидкости. Утечки жидкости повышаются при увеличении давления, следовательно, было бы лучше применять рабочую жидкость с повышенной вязкостью. Но при этом будут увеличиваться гидравлические потери, и снижаться КПД гидропривода. Аналогичное влияние оказывает на рабочую жидкость скорость движения исполнительных механизмов.

ГИДРОЛИНИИ

Гидролинии предназначены для прохождения рабочей жидкости в процессе работы гидропривода. В общем случае гидролиния состоит из всасывающей, напорной и сливной линий. Кроме того, в гидроприводе часто имеются гидролинии управления и дренажная. Всасывающая линия служит для подведения рабочей жидкости к насосу из бака, от распределителя или непосредственно от гидродвигателя.

По напорной гидролинии жидкость от насоса поступает через регулирующие и управляющие устройства к гидродвигателю.

По сливной гидролинии рабочая жидкость от гидродвигателя возвращается обратно к насосу (замкнутая схема циркуляции) или сливается в гидробак (разомкнутая схема циркуляции).

Всасывающая гидролиния имеет наибольший диаметр, и предназначена для перемещения жидкости из бака во всасывающую полость насоса

Гидролинии по конструкции бывают жёсткими и гибкими.

Жесткие трубопроводы изготавливают из стали, меди, алюминия и его сплавов. Стальные применяют при давлениях до 32 МПа, из сплавов алюминия до 15МПа. Медные трубопроводы при меньших давлениях (до 5МПа), где в силу пластичности материала требуется значительные деформации при монтаже гидролиний

Гибкие трубопроводы (рукава, шланги) изготавливают из полимеров (резина, поливинилхлорид, полиамид, полиолефины, фторопласт) и металла. Полимерные рукава состоят из эластичной внутренней трубки, упрочненной наружной оплеткой или внутренним текстильным каркасом.

Металлические рукава имеют гофрированную внутреннюю трубу, выполненную из бронзовой или стальной ленты, и наружную проволочную оплетку. Между витками ленты находится уплотнитель. Рукава с хлопчатобумажным уплотнением предназначены для работы с температурой рабочей жидкости до 110 С, а с асбестовым уплотнением - до 300 С. Металлические рукава применяют в специфических условиях эксплуатации гидросистем, в контакте с агрессивными рабочими жидкостями.

Гидролинии должны обладать:

- достаточной прочностью;
- минимальными потерями давления на преодоление гидравлических сопротивлений;
- отсутствием утечек жидкости;
- отсутствием в трубах воздушных пробок.

идролинии предназначены для прохождения рабочей жидкости в процессе работы гидропривода. В общем случае гидролиния состоит из всасывающей, напорной и сливной линий. Кроме того, в гидроприводе часто имеются гидролинии управления и дренажная. Всасывающая линия служит для подведения рабочей жидкости к насосу из бака, от распределителя или непосредственно от гидродвигателя.

 

Соединение гидролиний

Шестеренные насосы

Шестеренные машины в современной технике нашли широкое применение. Их основным преимуществом является конструкционная простота, компактность, надежность в работе и сравнительно высокий КПД. В этих машинах отсутствуют рабочие органы, подверженные действию центробежной силы, что позволяет эксплуатировать их при частоте вращения до 20 с-1

 

 

  1. С ВНЕШНИМ ЗАЦЕПЛЕНИЕМ
  2. С ВНУТРЕННИМ ЗАЦЕПЛЕНИЕМ
  3. ТРЕХШЕСТЕРЕННЫЙ

 

52 Шестеренный насос с внешним зацеплением состоит из ведущей и ведомой шестерен, размещенных с небольшим зазором в корпусе. При вращении шестерен жидкость, заполнившая рабочие камеры (межзубовые пространства), переносится из полости всасывания в полость нагнетания. Из полости нагнетания жидкость вытесняется в напорный трубопровод.

• Шестеренный насос состоит из корпуса 8, выполненного из алюминиевого сплава, внутри которого установлены подшипниковый блок 2 с ведущей 1 и ведомой 3 шестернями и уплотняющий блок 5, представляющий собой другую половину подшипника. Для радиального уплотнения шестерен в центральной части уплотняющего блока имеются две сегментные поверхности, охватывающие с установленным зазором зубья шестерен. Для торцевого уплотнения шестерен служат две поджимные пластины 7, устанавливаемые в специальные пазы уплотняющего блока с обеих сторон шестерен. В поджимных пластинах и в левой части уплотняющего блока есть фигурные углубления под резиновые прокладки 6. Давлением жидкости из полости нагнетания пластины 7 прижимаются к торцам шестерен, благодаря чему автоматически компенсируется зазор, а утечки остаются практически одинаковыми при любом рабочем давлении насоса. Ведущая и ведомая шестерни выполнены заодно с цапфами, опирающимися на подшипники скольжения подшипникового и уплотняющего блоков. Одна из цапф ведущей шестерни имеет шлицы для соединения с валом приводящего двигателя. Насос закрывается крышкой 4 с уплотнительным резиновым кольцом 9. Приводной вал насоса уплотнен резиновой манжетой, закрепленной специальными кольцами в корпусе насоса.

 

• В общем случае подача шестерного насоса определяется по формуле

где k - коэффициент, для некорригированных зубьев k = 7, для корригированных зубьев k = 9,4; D - диаметр начальной окружности шестерни; z - число зубьев(z=8…18); b - ширина шестерен; n - частота оборотов ведущего вала насоса; η об - объемный КПД

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...