Физические величины и их измерения
В физике для описания явлений, процессов и свойств тел или систем используются количественные характеристики – физические величины. Значения физических величин получают в ходе их измерения с помощью специальных технических средств. Измерить физическую величину – значит сравнить ее с однородной величиной, принятой за единицу. В результате получают числовое значение физической величины в принятых единицах. Единицы измерения не являются объектами природы, а представляют лишь вспомогательный аппарат, применяемый для ее изучения. Поэтому в принципе возможно бесконечное множество единиц измерения. Но на практике удобно пользоваться единой системой единиц. В СССР в 1963 г. была введена Международная система единиц СИ. В качестве основных в этой системе используются семь единиц, через которые выражаются остальные единицы, именуемые производными. Основными в системе СИ выбраны единицы следующих физических величин: массы - килограмм (кг); длины - метр (м); времени - секунда (с); силы тока - ампер (А); термодинамической температуры - кельвин (К); силы света - кандела (кд); количества вещества - моль (моль). Для проведения измерений используются специальные технические средства, которые по назначению разделяются на меры, измерительные приборы, измерительные преобразователи и вспомогательные средства. Совокупность различных средств измерений может образовывать измерительные установки и системы. Мерой называется средство измерений, предназначенное для воспроизведения физической величины заданного размера; это вещественно воспроизведенная (изготовленная) единица измерения. Различают однозначные меры, многозначные меры и наборы мер. Однозначная мера воспроизводит физическую величину одного размера (например, конденсатор постоянной емкости, гиря). Многозначная мера воспроизводит ряд значений одноименных физических величин различного размера (конденсатор переменной емкости, вариометр индуктивности, линейка с миллиметровыми делениями и т.п.). Набор мер представляет собой специально подобранный комплект мер для воспроизведения ряда значений одноименных величин различного размера, причем меры могут применяться как отдельно, так и в различных сочетаниях (магазины сопротивлений, емкостей, набор гирь). Магазин мер – это набор мер, конструктивно объединенных в одно целое.
Измерительные приборы позволяют получить информацию о значениях измеряемой величины в форме, доступной для непосредственного восприятия наблюдателем. Они могут быть классифицированы по различным признакам. В частности, измерительные приборы подразделяются на аналоговые, показания которых являются непрерывной функцией измеряемой величины, и цифровые, которые автоматически вырабатывают дискретные сигналы измерительной информации и дают показания в цифровой форме. В состав многих измерительных приборов и установок входят измерительные преобразователи, предназначенные для выработки сигналов измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения, но не поддающейся непосредственному восприятию наблюдателем. Примером являются терморезисторы, делители напряжения, измерительные механизмы электромеханических приборов и др. Измерительная установка представляет совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств. Она предназначена для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположена в одном месте.
Совокупность средств измерений и вспомогательных устройств, соединенных между собой каналами связи, называется измерительной системой. Все измерения физических величин подразделяются на прямые, косвенные, совокупные и совместные. Прямое измерение – это определение значения измеряемой величины непосредственно с помощью средств измерения. Так можно найти массу тела с помощью весов, измерить силу тока амперметром и др. При косвенных измерениях значение физической величины определяется по формуле, связывающей ее с другими величинами, полученными в ходе прямых измерений. Например, так измеряется плотность тел по массе и объему, сопротивление по силе тока и напряжению и т.д. При совокупных измерениях одновременно измеряют несколько однородных величин, а их искомые значения находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин. Совместные измерения состоят в одновременном измерении двух или нескольких не одноименных величин для нахождения зависимости между ними. Измерения могут проводиться методом непосредственной оценки или сравнения с мерой.
Измерения, испытания и контроль являются основными методами подтверждения соответствия продукции. Особенности их применения определяются задачами, которые решает испытательная лаборатория при сертификации. Физическая величина (ФВ) – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них (например, длина, масса, время, сила тока и т.д.). Физической величиной может быть характеристика продукции, подлежащая определению при оценке соответствия. Термин «величина» обычно применяется в отношении тех свойств или характеристик, которые могут быть оценены количественно, т.е. могут быть измерены. Существуют такие свойства или характеристики, которые современный уровень науки и техники ещё не позволяет оценивать количественно, например, запах, вкус, цвет. Поэтому такие характеристики обычно избегают называть величинами, а называют свойствами.
Размер ФВ – количественная определённость физической величины, присущая конкретному материальному объекту, системе, явлению или процессу. Другими словами, размер ФВ есть количественное содержание в данном объекте свойства, соответствующего понятию «физическая величина» (например, размер длины, массы, силы тока и т.д.) Значение ФВ – оценка физической величины в виде некоторого числа принятых для неё единиц, причём отвлечённое (безразмерное) число, входящее в значение физической величины, называется числовым значением. Истинное значение ФВ – значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Например, скорость света в вакууме, плотность дистиллированной воды при температуре 4 °С имеют вполне определённое значение – идеальное, которое мы не знаем. Действительное значение ФВ – значение физической величины, полученное экспериментальным путём и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Например, действительное значение скорости света в вакууме составляет 2,997925×108 м/с, плотность дистиллированной воды при температуре 40 С составляет 103 кг/м3. Единица ФВ – физическая величина, которой по определению присвоено числовое значение, равное единице. Единицы одной и той же ФВ могут различаться по своему размеру. Например, метр, фут и дюйм, являясь единицами длины, имеют различные числовые значения: 1 фут = 0,3048 м, 1 дюйм = 0,0254 м. Кратная единица ФВ – единица, которая в целое число раз больше основной или производной единицы. Дольная единица ФВ – единица, которая в целое число раз меньше основной или производной единицы. Кратные и дольные единицы ФВ образуются благодаря соответствующим приставкам к основным единицам (табл. 1). Система ФВ – совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин.
Таблица 1 – Приставки СИ и множители для образования десятичных кратных и дольных единиц и их наименований
Основная ФВ – физическая величина, входящая в систему и условно принятая в качестве независимой от других величин этой системы. Например, в системе LMT основные величины – длина, масса, время. Основная единица ФВ – единица основной физической величины, выбранная произвольно при построении системы единиц. Например, основные единицы Международной системы единиц (СИ): метр, килограмм, секунда, ампер, кельвин, моль, кандела. Рассмотрим наиболее распространённую во всем мире и принятую у нас в стране Международную систему единиц (СИ), содержащую семь основных единиц, которые приведены в табл. 2. В названии системы величин применяют символы величин, принятых за основные. Так, система величин механики, в которой в качестве основных приняты длина L, масса M и время T, должна называться системой LMT. Система основных величин, соответствующая Международной системе единиц (СИ), должна обозначаться символами LMTIQNJ, обозначающими соответственно символы основных величин - длины L, массы M, времени T, силы электрического тока I, температуры Θ (Q), количества вещества N и силы света J. Таблица 2 – Основные единицы СИ
Метр равен 1 650 763,73 длин волн в вакууме излучения, соответствующего переходу между уровнями 2p10 и 5d5 атома криптона-86. Килограмм равен массе международного прототипа килограмма. Международный прототип (эталон) килограмма, хранится в Международном бюро мер и весов (расположено в Севре близ Парижа) и представляет собой цилиндр диаметром и высотой 39,17 мм из платино-иридиевого сплава (90 % платины, 10 % иридия). В XVIII веке при создании метрической системы мер килограмм был определён как масса 1 дм³ воды при 4 °C (при этой температуре у воды наибольшая плотность). В 1799 году был изготовлен прототип килограмма в виде платиновой гири, однако его масса была на 0,028 г больше массы 1 дм³ воды.
Секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м друг от друга, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2×10-7 Н. Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Температура тройной точки воды – это температура точки равновесия воды в твёрдой (лед), жидкой и газообразной (пар) фазах на 0,01 К или 0,01°С выше точки таяния льда. Допускается применение шкалы Цельсия (°С). Температура в °С обозначается символом t: t = T – T 0, где T 0 = 273,15 K. Тогда t = 0 °C при Т = 273,15 К. Моль равен количеству вещества системы, содержащей столько структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540×1012 Гц, теоретическая сила света которого в этом направлении составляет 1/683 Вт/ср. Размерность ФВ – выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающего связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные, с коэффициентом пропорциональности, равным 1. Производные единицы системы СИ образуются с помощью простейших уравнений связи между величинами. Кроме системных единиц системы СИ в нашей стране узаконено применение некоторых внесистемных единиц: атмосфера (98 кПа), бар, мм рт. ст., ангстрем (10-10 м); киловатт-час; час (3600 с); дюйм (25,4 мм) и др. Кроме того, применяются логарифмические ФВ – логарифм (десятичный или натуральный) безразмерного отношения одноимённых ФВ. Логарифмические ФВ применяют для выражения звукового давления, усиления, ослабления. Единица логарифмической ФВ – бел (Б), которая определяется по следующей формуле:
где Р 2 и Р 1 – одноимённые энергетические величины (мощность, энергия). Для «силовых» величин (напряжение, сила тока, давление, напряжённость поля) бел определяется по формуле
Дольная единица от бела – децибел (дБ): 1 дБ = 0,1 Б.
Методы измерений Метод непосредственной оценки. Метод сравнения с мерой.
Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.
(По ГОСТ 16263 –70: Метод измерений – совокупность приемов использования принципов и средств измерений).
Оба определения дают слишком много возможностей для произвола, поскольку можно акцентировать принципы ("интерференционный метод измерения длины", "фотоэлектрический метод угловых измерений"), средства ("струнный метод измерения частоты"), приемы использования средств измерений ("метод полного уравновешивания", "контактный метод"). Кроме того, если для конкретного случая достаточно подробно описать все входящие в определение операции, получим описание измерительной процедуры или методику выполнения измерений (МВИ), а метод измерений придется признать идентичным МВИ. В частности нормативный документ содержит определения следующих терминов: · Метод непосредственной оценки; · Метод сравнения с мерой; · Нулевой метод измерений; · Дифференциальный метод измерений; · Метод измерений замещением; · Метод измерений дополнением; · Контактный метод измерений; · Бесконтактный метод измерений. Очевидно, что классификация методов измерений осуществлялась по разным основаниям, например, в зависимости от наличия или отсутствия в явном виде мер физической величины (гирь, концевых мер длины или др.). Методы измерений замещением и дополнением свидетельствуют об особенностях МВИ с позиций взаимодействия мер и прибора сравнения, а разделение методов измерений на контактные и бесконтактные связано с особенностями конструкции чувствительных элементов прибора. Поскольку набор приведенных терминов несколько отличается от набора в ГОСТ 16263– 70, а в литературе широко использовались именно включенные в него термины, мы по необходимости будем дополнять перечень терминов и определений межгосударственных Рекомендаций РМГ 29 –99. Анализ метода измерений следует начинать с выяснения основных признаков: является он методом непосредственной оценки или методом сравнения с мерой. Фактически это единственное принципиальное деление, поскольку значительная часть терминов просто уточняет разновидности метода сравнения с мерой. Различия между двумя методами измерений заключаются в том, что метод непосредственной оценки реализуют с помощью приборов без дополнительного применения мер, а метод сравнения с мерой предусматривает обязательное использование овеществленной меры. Меры в явном виде воспроизводят с выбранной точностью физическую величину определенного (близкого к измеряемой) размера. Метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений Метод сравнения с мерой (метод сравнения) – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. При использовании метода непосредственной оценки значение измеряемой физической величины определяют непосредственно по отсчетному устройству прибора прямого действия. Суть метода непосредственной оценки, как любого метода измерения состоит в сравнении измеряемой величины с мерой, принятой за единицу, но в этом случае мера "заложена" в измерительный прибор опосредованно. Прибор осуществляет преобразование входного сигнала измерительной информации, соответствующего всей измеряемой величине, после чего и происходит оценка ее значения. Формальное выражение для описания метода непосредственной оценки может быть представлено в следующей форме: Q = х, где Q – измеряемая величина, х – показания средства измерения. Метод сравнения с мерой характеризуется тем, что прибор используют для сопоставления измеряемой величины с известной величиной, воспроизводимой мерой. Для реализации этого метода можно использовать приборы с относительно небольшими диапазонами показаний, вплоть до вырожденной шкалы с одной нулевой отметкой. Примерами этого метода являются измерения массы на рычажных весах с уравновешиванием объекта гирями (мерами массы), измерения напряжения постоянного тока прибором-компенсатором путем сравнения с известной ЭДС нормального элемента. Формально метод сравнения с мерой может быть описан следующим выражением: Q = х + Хм, где Q – измеряемая величина, х – показания средства измерения. Хм – величина, воспроизводимая мерой. Примерами используемых мер являются гири, концевые меры длины или угла, эталонные резисторы и т.д. В случае, когда используют высокоточные меры, можно уменьшить инструментальную составляющую погрешность не только за счет точности меры, но и за счет существенного (по сравнению с измерением методом непосредственной оценки) уменьшения применяемого диапазона преобразований используемого прибора, что обычно приводит к снижению значения погрешности, вносимой прибором. Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают: · дифференциальный и нулевой методы измерений, · метод совпадений, · метод измерений замещением и метод противопоставления, · метод измерений дополнением. Дифференциальный и нулевой методы отличаются друг от друга в зависимости от степени приближения размера, воспроизводимого мерой, к измеряемой величине.
Дифференциальный метод измерений (дифференциальный метод) – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами. Пример – измерения длины, выполняемые на станковом приборе с измерительной головкой при настройке по блоку концевых мер. Фактически дифференциальный метод измерений – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, что формально соответствует х ≠ 0 в выражении Q = х + Хм. Нулевой метод измерений (нулевой метод) – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля. Формально это можно представить как х ≈ 0 в том же выражении Q = х + Хм из чего следует: Q ≈ Хм. Пример – измерения массы взвешиванием на равноплечих рычажных весах с полным уравновешиванием чашек. Метод совпадений (по ГОСТ 16263 –70) – метод сравнения с мерой, в котором значение измеряемой величины оценивают, используя совпадение ее с величиной, воспроизводимой мерой (т.е. с фиксированной отметкой на шкале физической величины). Для оценки совпадения можно использовать прибор сравнения или органолептику, фиксируя появление определенного физического эффекта (стробоскопический эффект, совпадение резонансных частот, плавление или застывание индикаторного вещества при достижении определенной температуры и другие физические эффекты). В зависимости от одновременности или неодновременности воздействия на прибор сравнения измеряемой величины и величины, воспроизводимой мерой, различают метод измерений замещением и метод противопоставления. Метод измерений замещением (метод замещения) – метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины. Пример — взвешивание с поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов (метод Борда). Следует отметить, что РМГ 29 –99 представляет слишком узкую трактовку метода замещения. В другой интерпретации рассматривают альтернативную пару: методы замещения и противопоставления. В таком случае метод замещения – метод сравнения с мерой, в котором известную величину, воспроизводимую мерой, после настройки прибора замещают измеряемой величиной, то есть эти величины воздействуют на прибор последовательно. Метод противопоставления – метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливают соотношение между этими величинами. Кроме этих терминов в РМГ 29 –99 приведен термин метод измерений дополнением (метод дополнения) – метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению. Метод дополнения может быть реализован как при замещении, так и при противопоставлении измеряемой величины и меры. Для анализа МВИ использование классификации методов измерений имеет существенное практическое значение, поскольку они прямо связаны с поиском источников погрешностей и оценкой их характера. Так метод непосредственной оценки может характеризоваться прогрессирующей составляющей погрешности, которая увеличивается с увеличением измеряемой величины. У всех разновидностей методов сравнения с мерой обязательно присутствуют не только погрешности приборов, но и погрешности мер, причем механизмы их проявления несколько различаются в соответствии с разновидностью метода. Контактный метод измерений (контактный метод) – метод измерений, основанный на том, что чувствительный элемент прибора приводится в контакт с объектом измерения. Примеры: измерение диаметра вала индикаторной скобой, измерение температуры тела термометром.
Бесконтактный метод измерений (бесконтактный метод) – метод измерений, основанный на том, что чувствительный элемент средства измерений не приводится в контакт с объектом измерения. Примерами могут быть измерение температуры в доменной печи пирометром и измерение расстояния до объекта радиолокатором. Если под контактом подразумевать только механический контакт чувствительного элемента средства измерений с объектом измерения, то деление методов измерений на контактные и бесконтактные имеет определенный смысл. Это существенно для анализа погрешностей, которые возникают из-за взаимодействия прибора с объектом измерений. При механическом контакте необходимо учитывать взаимодействия объекта и средства измерений (деформации из-за их недостаточной жесткости, контактные деформации, колебание переходных сопротивлений и др.). При отсутствии механического контакта следует учитывать особенности "бесконтактного съема" измерительной информации– оптические искажения в воздухе, ослабление сигнала на расстоянии и т.д. Для оценки метода измерений предлагается ответить на следующие вопросы: - применяется ли мера для воспроизведения физической величины в явном виде? - измеряются ли значения отклонений физической величины от известного значения меры? Отрицательный ответ на первый вопрос означает, что мы имеем дело с методом непосредственной оценки. Положительный ответ на этот вопрос позволяет утверждать, что применяется метод сравнения с мерой. Если при этом значение разности измеряемой величины и меры доводится до нуля, реализуется нулевой метод измерений (иногда называемый методом полного уравновешивания), а если разность этих значений алгебраически суммируется со значением меры– дифференциальный метод. Если в ходе измерения мера и измеряемый объект последовательно воздействуют на вход средства измерений (СИ), "замещая" друг друга, реализуется метод замещения. Например, измерительная головка на стойке настраивается по плоскопараллельной концевой мере длины, после чего мера убирается и замещается контролируемой деталью. Некоторые приборы (весы, измерительные мосты и др.) обеспечивают возможность одновременного воздействия на них меры и измеряемой физической величины. С помощью таких приборов реализуется метод противопоставления. Примеры кратких характеристик методик выполнения измерений: - измерение диаметра цилиндрической поверхности детали штангенциркулем в одном сечении – прямое абсолютное однократное (при повторении многократное) статическое измерение, выполняемое методом непосредственной оценки; - нахождение значения угла прямоугольного треугольника по результатам измерений его сторон – косвенное измерение плоского угла, при котором осуществляются прямые измерения длин. Методы прямых измерений зависят от конкретной выбранной реализации; - определение плотности материала по результатам измерений размеров (длин) образца и его массы – косвенное измерение искомой величины, требующее совместных измерений разноименных величин (длины и массы) и совокупных измерений нескольких одноименных физических величин (длин). Вычисляемый объем в этом случае также можно рассматривать как результат косвенного измерения.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|