Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

А . Взаимодействие радиоактивного излучения с веществом. Его ионизирующая и проникающая способность. Ослабление радиоактивного излучения при прохождении через вещество.




Все частицы и кванты, испускаемые при радиоактивном распаде, проходя через различные среды, взаимодействуют с электронами и ядрами атомов вещества. Это взаимодействие проявляется в двух первичных эффектах: ионизации атомов и их возбуждении, т.е. в переводе одного из электронов на более высокий энергетический уровень. По мере проникновения частиц радиоактивного излучения вглубь вещества, в результате многократных «столкновений», кинетическая энергия частиц постепенно уменьшается до значения средней кинетической энергии теплового движения молекул среды. После этого они становятся неотличимыми от частиц среды. α-частица присоединяет два электрона и превращается в атом гелия. Протон присоединяет электрон и становится атомом водорода. Электрон остаётся в свободном состоянии или присоединяется к положительно заряженному иону. Позитрон аннигилирует, т.е. соединяется с электроном. При этом частицы исчезают, а рождается два γ-кванта.

Такой механизм взаимодействия радиоактивного излучения, приводящий к постепенному уменьшению скорости движения час-тиц, получил название ионизационного торможения, а все виды излучения объединяются под общим названием ионизирующего излучения.

Первичные процессы ионизации и возбуждения атомов вызывают вторичные эффекты:

а) появление свободных электронов, способных вызывать вторичную ионизацию и возбуждение;

б) переход возбуждённых атомов в основное состояние и соответственно появление характеристического рентгеновского и оптического электромагнитного излучения;

в) активация молекул, приводящая к фотохимическим реакциям;

г) явление радиолюминесценции;

д) увеличение скорости теплового движения частиц среды;

е) нарушение структуры молекул вещества, в частности, радиолиз воды, который заключается в ионизации и последующем распаде ионизированной молекулы воды с образованием ненасыщенных радикалов и , которые не несут электрических зарядов, но имеют ненасыщенные валентности, и поэтому обладают исключительно высокой химической активностью. При этом образуются также соединения типа Н2О2 (перекись водорода) и (гидроперекись), которые тоже являются сильными окислителями.

Следует отметить, что вторичные эффекты могут вызвать аналогичные процессы третьего порядка и т.д. до тех пор, пока это будет

энергетически возможно.

В целом, ионизационная способность радиоактивных излучений зависит от энергии частиц, их заряда, а также свойств среды и оценивается тремя взаимосвязанными величинами:

1) Удельная ионизация или линейная плотность ионизации, ; (м -1, см –1) – число пар ионов, создаваемых ионизирующим излучением на пути единичной длины.

2) Удельные ионизационные потери или линейная тормозная способность, , [S]=Дж/м, эВ/см – количество энергии, теряемое частицей на пути единичной длины.

3) Средний линейный пробег или пробег частиц, R, [R] = м, см, мм, км – это путь частицы в данном веществе до момента, когда её средняя кинетическая энергия не сравняется со средней кинетической энергией теплового движения.

 

 

Биологическое действие ионизирующих излучений. Защита от ионизирующих излучений. Применение радиоактивных излучений для изучения строения вещества и свойств клетки. Изотопные индикаторы и способы их получения.

Разные типы ионизирующего излучения обладают разным разрушительным эффектом и разным способом воздействия на биологические ткани. Соответственно, одной и той же поглощённой дозе соответствует разная биологическая эффективность излучения. Поэтому для описания воздействия излучения на живые организмы вводят понятие относительной биологической эффективности излучения, которая измеряется с помощью коэффициента качества. Для рентгеновского, гамма- и бета-излучений коэффициент качества принят за 1. Альфа-излучение и осколки ядер имеют коэффициент качества составляет 10…20. Нейтроны — 3…20 в зависимости от энергии. Для заряженных частиц биологическая эффективность прямо связана с линейной передачей энергии данного типа частиц (средняя потеря энергии частицей на единицу длины пробега частицы в ткани).

Для учёта биологического эффекта поглощённой дозы была введена эквивалентная поглощённая доза ионизирующего излучения, численно равная произведению поглощённой дозы на коэффициент биологической эффективности. В системе СИ эффективная и эквивалентная поглощенная доза измеряется в зивертах (Зв, англ. sievert, Sv).

В медицине

· Для получения картины внутренних органов и скелета используют рентгенография, рентгеноскопия, компьютерная томография.

· Для лечения опухолей и других патологических очагов используют лучевую терапию: облучение гамма-квантами, рентгеном, электронами, тяжёлыми ядерными частицами, такими как протоны, тяжёлые ионы, отрицательные π-мезоны и нейтроны разных энергий.

· Введение в организм радиофармацевтических препаратов, как с лечебными, так и с диагностическими целями.

Меченые атомы (изотопные индикаторы) содержат изотопы, которые по своим свойствам (радиоактивности, атомной массе) отличаются от других изотопов данного элемента. Их добавляют к химическому соединению или смеси, где находится исследуемый элемент; поведение меченых атомов характеризует поведение элемента в исследуемом процессе. В качестве меченых атомов используют как стабильные (устойчивые) изотопы, так и радиоактивные (неустойчивые) изотопы. Для регистрации радиоактивных меченых атомов применяют счетчики, ионизационные камеры; нерадиоактивные изотопы регистрируют с помощью масс-спектрографов.

 

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...