Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Вывод формул коэффициентов зависимости в линейной регрессии.




Проверка гипотезы о независимости наблюдаемых переменных.

Простая регрессия

Есть 2 набора величин (Х и У) и нужно установить, имеется ли связь между этими величинами.

; ;

Точное равенство означает, что =1

При исследовании корреляционных зависимостей между признаками решению подлежит широкий круг вопросов, к которым следует отнести:

1)Предварительный анализ свойств моделируемой совокупности единиц;

2)Установление факта наличия связи, определение её формы и направления;

3)Измерение степени тесноты связи между признаками;

4)Построение регрессивной модели, т.е. нахождение аналитического выражения связи;

5)Оценка адекватности модели, её экономическая интерпретация и практическое использование.

Для того, чтобы результаты корреляционного анализа нашли практическое применение и дали желаемый результат, должны выполняться определённые требования

1.Требование однородности тех единиц, которые подвергаются изучению.

2.Количественная оценка однородности исследуемой совокупности по комплексу признаков (расчет относительных показателей вариации, коэффициент вариации, отношение размаха вариации к среднему квадратическому отклонению).

3.Достаточное число наблюдений.

4.Исследуемая совокупность должна иметь нормальное распределение.

5.Факторы должны иметь количественное выражение.

2.2.Статистические методы выявления наличия корреляционной связи между двумя признаками

Простейшим приёмом обнаружения связи является сопоставление двух параллельных рядов – ряда значений признака-фактора и соответствующих ему значений результативного признака. Значение факторного признака располагается в возрастающем порядке и затем прослеживается направление изменения величины результативного признака. Результативный признак (функция) обозначается через y, а факторный признак через x.

Ниже приведён пример обнаружения корреляционной связи между стажем.

Наличие большого числа различных значений результирующего признака затрудняет восприятие таких параллельных рядов. В таких случаях целесообразнее воспользоваться для установления факта наличия связи корреляционной таблицей. Корреляционная таблица позволяет изложить материал сжато, компактно и наглядно.

Построение корреляционной таблицы начинают с группировки значений фактического и результативного признаков. В первый столбик следует вписать значения факторного признака (x), а первую строку заполнить значениями результативного признака (y). Числа, полученные на пересечении строк и столбцов, означают частоту повторения данного сочетания значений x и y.

Данная корреляционная таблица уже при общем знакомстве даёт возможность выдвинуть предположение о наличии или отсутствии связи, а также выяснить её направление, Если частоты расположены по диагонали из верхнего левого угла в правый нижний, то связь между признаками прямая. Если же частоты расположены по диагонали справа налево, - то связь обратная. В данном случае можно предположить наличие прямой связи.

Корреляционная зависимость чётко обнаруживается только при рассмотрении средних значений результативного признака, соответствующих определённым значениям факторного признака, т.к. при достаточно большом числе наблюдений в каждой группе влияние прочих случайных факторов будет взаимопогашаться, и чётче выступит зависимость результирующего признака от фактора, положенного в основу группировки.

Для предварительного выявления наличия связи и раскрытия её характера, применяют графический метод. Используя данные об индивидуальных значениях признака-фактора и соответствующих ему значениях результативного признака, строится в прямоугольных координатах точечный график, который называют «полем корреляции». Для данного примера поле корреляции имеет следующий вид (см. рис. 2.1).
[pic]

Точки корреляционного поля не лежат на одной линии, они вытянуты определённой полосой слева на право. Нанеся средние значения факторного и результирующего признаков на график и соединяя последовательно отрезками прямых соответствующие им точки, получают эмпирическую линию связи.

Если эмпирическая линия связи по своему виду приближается к прямой линии, то это свидетельствует о наличии прямолинейной корреляционной связи между признаками. Если же имеется тенденция неравномерного изменения значений результирующего признака, и эмпирическая линия связи будет приближаться к какой-либо кривой, то это может быть связано с наличием криволинейной корреляционной связи.

2.3. Множественная корреляция

Проведенный выше анализ статистических совокупностей позволяет изучить взаимосвязь только двух переменных.

На практике же часто приходится исследовать зависимость результирующего признака от нескольких факторных признаков. В этом случае статистическая модель может быть представлена уравнением регрессии с несколькими переменными. Такая регрессия называется множественной
(множественная корреляция).

Например, линейная регрессия с m независимыми переменными имеет вид: yi = a0x0 + a1x1 + a2x2 + … + amxm,

(2.1) где а0, а1, а2, …, аm – параметры уравнения регрессии,

m – число независимых переменных, х0, х1, х2, …, хm – значения факторного признака, yi – значение результирующего признака.

При оценке параметров этого уравнения в каждом i-том наблюдении фиксируют значения результирующего признака у и факторных признаков хi0…хim.

Оценки параметров уравнения регрессии находятся с помощью метода наименьших квадратов, который в случае множественной регрессии удобнее представить в матричной форме.

Применяются следующие обозначения: а = (аj), j = 0,1,…,m – вектор оценок параметров, m – число неизвестных параметров; у = (уi), i = 1,2,…,n – вектор значений зависимой переменной, n – число наблюдений; х = (хij) – матрица значений независимых переменных размерностью n(m+1); е = (ei) – вектор ошибок в уравнении с оцененными параметрами.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...