Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Абстракция потенциальной бесконечности.




Против допустимости идеи актуальной бесконечности в математике, а также тех логических средств, которые связаны с этой идеей (в частности, закона исключенного третьего), резко выступили представители интуиционистского направ­ления в обосновании математики (Л. Брауэр, Г. Вейль), воз­никшего в первое десятилетие прошлого века. Принципиально исключая применение абстракции актуальной бесконечности, интуиционисты считают допустимым лишь понятие, потен­циальной бесконечности.

Так, Брауэр утверждал, что о существовании математических объектов можно говорить лишь только в том случае, если принципиально возможно осуществить их вычисление или построение. Реализуя эту идею, они пытались построить основания математики, исходя из некоей присущей человеку праинтуиции, порождаю­щей натуральный ряд чисел и из него — всю математику. И хотя в действительности возможность построения тех или иных объектов всегда ограничена определенными условиями (наличие соответствующего материала, времени, пространства и т. п.), в теории можно отвлечься от этих ограничений. Надо заметить, что в основе понятия потенциальной бесконечности лежит гипотеза потенциальной осущест­вимости.

Эта гипотеза допускает построение не только таких объектов, которые можно осуществить практически (хотя бы в принципе), но и объектов потенциально осуществимых, т. е. осуществимых при предположении, что исследователь обладает для этого со­ответствующими возможностями. Ясно, что такое пред­положение представляет собой абстракцию: оно огрубля­ет, схематизирует действительное положение вещей, по­скольку реальная возможность построения объектов всег­да ограничена определенными рамками.

Можно ввести понятие потенциальной бесконечности как неограниченного про­цесса построения математических объектов, который не имеет последнего шага. Действительно, гипотеза потен­циальной осуществимости допускает, что после n шага всегда возможен n+1 шаг. А это означает, что в принципе допустимо существование безграничного про­цесса, или потенциальной бесконечности. Элементы та­кой бесконечности не существуют одновременно, они по­следовательно возникают в процессе построения. Именно так и воспринимается натуральный ряд чисел как ряд, начинающийся с 1, последовательно переходящий к чис­лам 2, 3, 4... и не имеющий последнего члена. Требует­ся немалое усилие, чтобы представить этот ряд в виде закопченного множества чисел. Это показывает, что сама идея потенциальной бесконечности интуитивно значи­тельно яснее, чем идея актуальной бесконечности. Поэтому логично предположить, что именно идея потенциальной бес­конечности первоначально возникла в математике.

В античной науке формулировку понятия потенци­альной бесконечности встречается впервые у Анаксагора (VI в. до н. э.). Рассматривая вопрос о делимости тел, он писал: «В малом не существует наименьшего, но всегда имеется еще меньшее. Ибо то, что существует, не может исчезнуть, как бы далеки ни были продолжено деление»[1, c.128-129]. Процесс деления здесь анализируется в аб­страктной форме, так как при этом отвлекаются, во-пepвыx, от качественных особенностей процесса, когда чисто количественное уменьшение тела приводит к но­вым качественным элементам (молекула, атом, «элемен­тарные» частицы); во-вторых, от практических возмож­ностей осуществления процесса, т. е. бесконечная дели­мость рассматривается как потенциально осуществимый процесс. Такой абстрактный подход к вопросу о делимо­сти материи встретил серьезные возражения со стороны древнегреческих атомистов. Допуская неограниченную делимость тел, указывали атомисты, исследователь тем самым пред­полагает возможность дойти в этом процессе до точек, поскольку «в малом не существует наименьшего». Сле­довательно, любую часть тела можно делить дальше и в конечном итоге дойти до точек. Но тогда тела но оста­нется: оно должно было бы состоять из точек, что оче­видно нелепо.

Следует еще раз подчеркнуть, что потенциальная бесконечность представляет собой зна­чительную идеализацию действительных процессов. Поэтому нельзя требовать, чтобы эта бесконечность существовала в реальном мире именно с теми свойствами, ко­торые ей приписывает математика. Ведь никто не ищет в природе точек, прямых и плоскостей и том виде, как они существуют в геометрии. Между тем известный аме­риканский специалист по математической логике X. Карри, основываясь на том, что «в нашем окружении нет ничего, соответствующего идее бесконечности», делает вывод о несостоятельности «реалистической точки зрения на матема­тику».

Гильберт справедливо критикует неверное представление о неограниченной делимости тел, при ко­торой всякая сколь угодно малая их часть обладает свойствами первоначального тела. В известной статье «О бесконечном», опираясь на теорию атомного строения материи и открытие квантов энергии, он делает вывод, что «однородный континуум, который должен был бы допускать неограниченное деление и тем самым реали­зовать бесконечное в малом, в действительности нигде не встречается»[1].

Беско­нечная делимость континуума представляет собой опе­рацию, существующую лишь в мышлении. Есте­ственно поэтому, что понятие потенциальной бесконечно­сти, которое допускает такую возможность, не может претендовать на адекватное описание физического про­цесса деления материи. При таком процессе объект не только количественно уменьшается, но и каче­ственно изменяется. В современном естествознании мельчайшей части­цей вещества принято считать молекулу. Деление моле­кул дает новые качественные образования — атомы, ко­торые существенно отличаются от молекул. Разложение атома дает различные элементарные частицы, также ка­чественно отличающиеся от атомов. Все это показывает, что процесс деления материи всегда связан с качествен­ными ее изменениями. Понятие же потенциальной бес­конечности, как и любое другое математическое поня­тие, отвлекается, абстрагируется от качественных осо­бенностей явлений и процессов, рассматривает их в «чис­том», идеализированном виде. Вполне понятно поэтому, что такое бесконечное не может существовать в приро­де.

Однако, отрицая объективный характер математиче­ской бесконечности, приписывая ей роль априорной идеи в духе Канта, он делает уступку идеализму. Впрочем, более внимательный анализ показывает, что для Гильберта бесконечность, как и любое другое идеальное высказывание математической теории, представляет прежде всего форму всеобщности. Одна из пло­дотворных идей его теории доказательства состоит в том, чтобы свести математику «к совокупно­сти формул, во-первых, такиx, которым соответсвуют содержательные сообщения конечных высказываний, т. е. по существу числовых равенств и неравенств, и, во-вто­рых, других формул, которые сами по себе никакого значения не имеют и которые являются идеальными об­разами нашей теории».

Эти идеальные образы и представляют обобщения ко­нечных, частных высказываний. Подобно тому как обращение с формулами становится возможным благодаря наличию частных высказываний, «оперирование с бесконечным может стать надежным только через конечное». Согласно финитной установке Гильберта, в теории доказательства, или метатеории, ко­торая имеет объектом исследования формальные систе­мы, утверждения должны быть интуитивно ясными, а выводы должны убеждать. Поскольку актуальная беско­нечность не удовлетворяет этим требованиям, она не по­пользуется в метатеории.

Идея бесконечности допусти­ма как основа разумного мышления, если не за­бывать ее связь с конечными процессами и объектами.

Конструктивное направление в математике также не допускает использование абстракции актуальной бесконечности, но в отличие от интуиционизма (Л. Брауэра, Г. Вейля), представители этого направления (А. А. Марков, Н. Л. Шанин и др.) опираются на строгое математическое понятие — понятие алгоритма. Математический объект признается ими существующим лишь постольку, поскольку имеется возможность построения его в рамках абстракции потенциальной осуществимости, т. е. если построе­ние объекта осуществимо либо практически, либо потен­циально.


Заключение.

История развития науки показывает, что теоретическое познание начинается с возникновения отдельных абстракций, затем происходит их объединение, или синтез, в рамках научных систем и теорий.

По мере углубления знаний о количественных отношениях и пространственных формах действительного мира возрастает и абстрактность самой математики и соответственно этому все более отдаленной и опосредованной становится связь ее отдельных понятий с действительностью.

Математика, как и всякая другая наука, представляет собой не конгломерат различных понятий, суждений и законов, а единую, цельную систему научных знаний, в которой одни понятия и суждения зависят от других. Пожалуй, ни в одной другой науке эти связи и отношения между понятиями, суждениями и даже отдельными теориями нельзя выявить так четко и определенно, как в математике.

Подобно тому как вопрос об отношении мышления к бытию является основным для философии, вопрос об отношении математического знания к реальной действительности является основным философским вопросом для математики. И одно из главных мест в понимании отношения математических теорий к реальности занимает понятие абстракции. Ведь именно на ней, в определенном смысле, строятся все математические теории и выводы.

И подобно же тому как решение вопроса отношения математического знания к реальной действительности определяет два направления в философии: материализм, рассматривающий понятия математики как отражение определенных свойств и отношений внешнего мира, и идеализм, считающий эти понятия либо чистыми созданиями мысли, либо условными соглашениями, либо доопытными, априорными идеями, словом, для идеалистов математические понятия – нечто первичное, а материальный мир – вторичное. Так и различные взгляды на абстракции различных идей, например, бесконечности, осуществимости и т. д., порождают различные школы философии.

 


Список литературы.

[1] Рузавин Г.И. О природе математического знания. (Очерки по методологии математики). М., 1968, 302 с.

[2] Киселева Н.А. Математика и действительность. М., 1967.

[3] Лукьянец В.С. Философские основания математического познания. Киев, 1980.

[4] Яновская С.А. Методологические проблемы математики. М., 1972, 280 с.

[5] Рузавин Г.И. Философские проблемы оснований математики. М., 1983, 302с.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...